A CONNECTION BETWEEN STATE-SPACE AND DOUBLY COPRIME MATRIX-FRACTION DESCRIPTIONS OF MULTIVARIABLE SYSTEMS

被引:7
作者
FANG, CH
CHANG, FR
机构
[1] NATL KAOHSIUNG INST TECHNOL,DEPT ELECTR ENGN,KAOHSIUNG 80782,TAIWAN
[2] NATL TAIWAN UNIV,DEPT ELECT ENGN,TAIPEI,TAIWAN
关键词
coprime; factorization; Matrix-fraction description; transfer matrix;
D O I
10.1016/0167-6911(90)90022-M
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Explicit formulas for doubly coprime matrix-fraction descriptions (MFDs) of the transfer matrix of a linear time-invariant state-space system are given in terms of a controllable and observable state-space realization of the transfer matrix. These formulas allow existing computational algorithms to be utilized for the purpose of computing doubly coprime MFDs of multivariable systems. © 1990.
引用
收藏
页码:261 / 265
页数:5
相关论文
共 11 条
[1]  
[Anonymous], 1980, LINEAR SYSTEMS
[2]  
[Anonymous], 1984, LINEAR SYSTEM THEORY
[3]   SOME RELATIONS SATISFIED BY PRIME POLYNOMIAL MATRICES AND THEIR ROLE IN LINEAR-MULTIVARIABLE SYSTEM THEORY [J].
ANTSAKLIS, PJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1979, 24 (04) :611-616
[4]   CONTROLLABILITY, OBSERVABILITY, AND DUALITY IN SINGULAR SYSTEMS [J].
COBB, D .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (12) :1076-1082
[5]   ON THE DESIGN OF A SENSITIVITY-REDUCING OPTIMAL DEAD-BEAT CONTROLLER [J].
GOPAL, M ;
NAIR, PP .
INTERNATIONAL JOURNAL OF CONTROL, 1985, 42 (04) :877-886
[6]   A CONNECTION BETWEEN STATE-SPACE AND DOUBLY COPRIME FRACTIONAL REPRESENTATIONS [J].
NETT, CN ;
JACOBSON, CA ;
BALAS, MJ .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1984, 29 (09) :831-832
[7]   NUMERICAL ALGORITHMS FOR EIGENVALUE ASSIGNMENT BY STATE FEEDBACK [J].
PATEL, RV ;
MISRA, P .
PROCEEDINGS OF THE IEEE, 1984, 72 (12) :1755-1764
[8]   STRUCTURAL-PROPERTIES OF LINEAR DYNAMICAL-SYSTEMS [J].
ROSENBROCK, HH .
INTERNATIONAL JOURNAL OF CONTROL, 1974, 20 (02) :191-202
[9]  
WANG FY, 1989, IEEE T AUTOMAT CONTR, V34, P733, DOI 10.1109/9.29400
[10]  
WOLOVICH WA, 1974, LINEAR MULTIVARIABLE