TOTALLY MONOTONE-FUNCTIONS WITH APPLICATIONS TO THE BERGMAN SPACE

被引:11
作者
KORENBLUM, B [1 ]
ONEIL, R [1 ]
RICHARDS, K [1 ]
ZHU, K [1 ]
机构
[1] TEXAS TECH UNIV, DEPT MATH, LUBBOCK, TX 79409 USA
关键词
D O I
10.2307/2154243
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a theorem of S. Bernstein [1] we prove a special case of the following maximum principle for the Bergman space conjectured by B. Korenblum [3]: There exists a number delta is-an-element-of (0, 1) such that if f and g are analytic functions on the open unit disk D with \f(z)\ less-than-or-equal-to \g(z)\ on delta less-than-or-equal-to \z\ < 1 then \\f\\2 less-than-or-equal-to \\g\\2, where \\ \\2 is the L2 norm with respect to area measure on D. We prove the above conjecture when either f or g is a monomial; in this case we show that the optimal constant delta is greater than or equal to 1/square-root 3.
引用
收藏
页码:795 / 806
页数:12
相关论文
共 4 条
  • [1] Bernstein S, 1929, ACTA MATH-DJURSHOLM, V52, P1
  • [2] CARLESON L., COMMUNICATION
  • [3] Korenblum B., 1991, PUBL MAT, V35, P479
  • [4] KORENBLUM B, 1952, USP MAT NAUK, V4, P172