GENERALIZATION OF THE FEJER-HADAMARD'S INEQUALITY FOR CONVEX FUNCTION ON COORDINATES

被引:5
作者
Farid, Ghulam [1 ]
Rehman, Atiq Ur [1 ]
机构
[1] COMSATS Inst Informat Technol, Attock Campus, Attock, Pakistan
来源
COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY | 2016年 / 31卷 / 01期
关键词
convex functions; Hadamard inequality; convex functions on; coordinates;
D O I
10.4134/CKMS.2016.31.1.053
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we give generalization of the Fejer Hadamard inequality by using definition of convex functions on n-coordinates. Results given in [8, 12] are particular cases of results given here.
引用
收藏
页码:53 / 64
页数:12
相关论文
共 50 条
[21]   Refinements of hadamard's inequality for r-convex functions [J].
Yang, GS ;
Hwang, DY .
INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2001, 32 (10) :1571-1579
[22]   On Generalizations of the Hadamard Inequality for (alpha,m)-Convex Functions [J].
Set, Erhan ;
Sardari, Maryam ;
Ozdemir, Muhamet Emin ;
Rooin, Jamal .
KYUNGPOOK MATHEMATICAL JOURNAL, 2012, 52 (03) :307-317
[23]   REFINEMENT OF FEJER INEQUALITY FOR CONVEX AND CO-ORDINATED CONVEX FUNCTIONS [J].
Hsu, Kai-Chen .
MATHEMATICA SLOVACA, 2020, 70 (03) :585-598
[24]   Fractional Hermite-Hadamard-Fejer Inequalities for a Convex Function with Respect to an Increasing Function Involving a Positive Weighted Symmetric Function [J].
Mohammed, Pshtiwan Othman ;
Abdeljawad, Thabet ;
Kashuri, Artion .
SYMMETRY-BASEL, 2020, 12 (09)
[25]   ON WEIGHTED GENERALIZATION OF THE HERMITE-HADAMARD INEQUALITY [J].
Jaksic, Rozarija ;
Kvesic, Ljiljanka ;
Pecaric, Josip .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2015, 18 (02) :649-665
[26]   GENERALIZATION OF OSTROWSKI INEQUALITY FOR CONVEX FUNCTIONS [J].
Dragomir, Silvestru Sever .
MATHEMATICA SLOVACA, 2018, 68 (05) :1017-1040
[27]   ON SOME HERMITE-HADAMARD-FEJER INEQUALITIES FOR (k, h)-CONVEX FUNCTIONS [J].
Micherda, Bartosz ;
Rajba, Teresa .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2012, 15 (04) :931-940
[28]   New generalized fractional versions of Hadamard and Fejer inequalities for harmonically convex functions [J].
Qiang, Xiaoli ;
Farid, Ghulam ;
Yussouf, Muhammad ;
Khan, Khuram Ali ;
Rahman, Atiq Ur .
JOURNAL OF INEQUALITIES AND APPLICATIONS, 2020, 2020 (01)
[29]   Inequalities of Bermite-Hadamard-Fejer type for convex functions and Lipschitzian functions [J].
Yang, GS ;
Tseng, KL .
TAIWANESE JOURNAL OF MATHEMATICS, 2003, 7 (03) :433-440
[30]   Jensen, Hermite-Hadamard, and Fejer-Type Inequalities for Reciprocally Strongly (h, s)-Convex Functions [J].
Wang, Yujun ;
Saleem, Muhammad Shoaib ;
Perveen, Zahida ;
Imran, Muhammad .
JOURNAL OF MATHEMATICS, 2023, 2023