GROUP-INVARIANT SOLUTIONS OF DIFFERENTIAL-EQUATIONS

被引:199
作者
OLVER, PJ [1 ]
ROSENAU, P [1 ]
机构
[1] TECHNION ISRAEL INST TECHNOL,DEPT MECH ENGN,IL-32000 HAIFA,ISRAEL
关键词
D O I
10.1137/0147018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the concept of a weak symmetry group of a system of partial differential equations, that generalizes the 'nonclassical' method introduced by G. W. Bluman and J. D. Cole for finding group-invariant solutions to partial differential equations. Given any system of partial differential equations, it is shown how, in principle, to construct group-invariant solutions for any group of transformations by reducing the number of variables in the system. Conversely, every solution of the system can be found using this reduction method with some weak symmetry group.
引用
收藏
页码:263 / 278
页数:16
相关论文
共 18 条
[1]   NON-LINEAR EVOLUTION EQUATIONS AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE [J].
ABLOWITZ, MJ ;
RAMANI, A ;
SEGUR, H .
LETTERE AL NUOVO CIMENTO, 1978, 23 (09) :333-338
[2]  
AMES WF, 1972, NONLINEAR PARTIAL DI, V2
[3]  
BLUMAN GW, 1969, J MATH MECH, V18, P1025
[4]  
BLUMAN GW, 1974, APPL MATH SCI, V13
[5]  
FOKAS A, 1979, THESIS CALTECH PASAD
[6]  
Ince E. L., 1956, ORDINARY DIFFERENTIA
[8]  
LIE S, 1895, ALLGEMEINEN THEORIE, V1, P53
[9]   THE CONNECTION BETWEEN PARTIAL-DIFFERENTIAL EQUATIONS SOLUBLE BY INVERSE SCATTERING AND ORDINARY DIFFERENTIAL-EQUATIONS OF PAINLEVE TYPE [J].
MCLEOD, JB ;
OLVER, PJ .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1983, 14 (03) :488-506
[10]   ON SIMILARITY SOLUTIONS OF THE BOUSSINESQ EQUATION [J].
NISHITANI, T ;
TAJIRI, M .
PHYSICS LETTERS A, 1982, 89 (08) :379-380