INTRODUCTION TO DIFFUSION ON FINSLER MANIFOLDS

被引:2
|
作者
ANTONELLI, PL
ZASTAWNIAK, TJ
机构
[1] Department of Mathematics University of Alberta, Edmonton
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
10.1016/0895-7177(94)90160-0
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Diffusion theory on Finsler manifolds is briefly presented, including generalizations of the notions of stochastic parallel transport, stochastic development (rolling), and Brownian motion from the well-known Riemannian case. The results discussed cover the case of an arbitrary h- and v-metrical deflection-free v-symmetric Finsler connection, which proves important in applications, as can be seen from our second paper in this issue involving the so-called Wagner connection.
引用
收藏
页码:109 / 116
页数:8
相关论文
共 50 条
  • [1] Geodesic Random Walks, Diffusion Processes and Brownian Motion on Finsler Manifolds
    Ma, Tianyu
    Matveev, Vladimir S.
    Pavlyukevich, Ilya
    JOURNAL OF GEOMETRIC ANALYSIS, 2021, 31 (12) : 12446 - 12484
  • [2] Geodesic Random Walks, Diffusion Processes and Brownian Motion on Finsler Manifolds
    Tianyu Ma
    Vladimir S. Matveev
    Ilya Pavlyukevich
    The Journal of Geometric Analysis, 2021, 31 : 12446 - 12484
  • [3] COMPLEX FINSLER MANIFOLDS
    FUKUI, M
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1989, 29 (04): : 609 - 624
  • [4] Sasakian Finsler manifolds
    Yaliniz, Ayse Funda
    Caliskan, Nesrin
    TURKISH JOURNAL OF MATHEMATICS, 2013, 37 (02) : 319 - 339
  • [5] Generalization of Finsler metrics on the product of Finsler manifolds
    Sadighi, Akbar
    Khatamy, R. Chavosh
    Toomanian, Megerdich
    MATHEMATICAL SCIENCES, 2018, 12 (04) : 243 - 248
  • [6] Generalization of Finsler metrics on the product of Finsler manifolds
    Akbar Sadighi
    R. Chavosh Khatamy
    Megerdich Toomanian
    Mathematical Sciences, 2018, 12 : 243 - 248
  • [7] COMPLETENESS OF FINSLER MANIFOLDS
    UDRISTE, C
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1993, 42 (1-2): : 45 - 50
  • [8] Finsler almost Blaschke manifolds
    Durán, CE
    HOUSTON JOURNAL OF MATHEMATICS, 2003, 29 (01): : 77 - 92
  • [9] Laplacian on Complex Finsler Manifolds
    Jinxiu XIAO 1 Tongde ZHONG 2 Chunhui QIU 2 1 Department of Applied Mathematics
    Chinese Annals of Mathematics(Series B), 2011, 32 (04) : 507 - 520
  • [10] Heat Flow on Finsler Manifolds
    Ohta, Shin-Ichi
    Sturm, Karl-Theodor
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (10) : 1386 - 1433