THE LINEAR-PROGRAMMING BOUND FOR BINARY LINEAR CODES

被引:14
作者
BROUWER, AE
机构
[1] Department of Mathematics and Computer Science, Eindhoven University of Technology, 5600, MB, Eindhoven
关键词
BINARY LINEAR CODE; UPPER BOUND;
D O I
10.1109/18.212302
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Combining Delsarte's linear programming bound with the information that certain weights cannot occur, new upper bounds for d(min) (n, k), the maximum possible minimum distance of a binary linear code with given word length n and dimension k, are derived.
引用
收藏
页码:677 / 680
页数:4
相关论文
共 16 条
[1]   AN UPDATED TABLE OF MINIMUM-DISTANCE BOUNDS FOR BINARY LINEAR CODES [J].
BROUWER, AE ;
VERHOEFF, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1993, 39 (02) :662-677
[2]  
BROUWER AE, 1992, UNPUB DESIGNS CO MAR
[3]  
Burton, 1966, J COMB THEORY, V1, P96
[4]   NEW MINIMUM DISTANCE BOUNDS FOR CERTAIN BINARY LINEAR CODES [J].
DASKALOV, RN ;
KAPRALOV, SN .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1992, 38 (06) :1795-1796
[5]  
DASKALOV RN, 1992, P ALGEBRAIC COMBINAT, P36
[6]  
DASKALOV RN, 1992, THERE IS NO BINARY L
[7]  
DELSARTE P, 1973, PHILIPS RES REP S, V10
[8]  
DODUNEKOV SM, 1991, LITHISYI1283 LINK U
[9]   THE NONEXISTENCE OF CERTAIN BINARY LINEAR CODES [J].
HILL, R ;
TRAYNOR, KL .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1990, 36 (04) :917-922
[10]   A NEW UPPER BOUND FOR ERROR-CORRECTING CODES [J].
JOHNSON, SM .
IRE TRANSACTIONS ON INFORMATION THEORY, 1962, 8 (03) :203-207