INTEGER POINTS IN ARITHMETIC SEQUENCES

被引:0
|
作者
Tucker, Thomas J. [1 ]
机构
[1] Univ Rochester, Dept Math, Hylan Bldg, Rochester, NY 14627 USA
来源
BULLETIN OF THE INSTITUTE OF MATHEMATICS ACADEMIA SINICA NEW SERIES | 2014年 / 9卷 / 04期
关键词
Integral points; orbits; semiabelian varieties;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a dynamical analog of the Mordell-Lang conjecture for integral points. We are able to prove this conjecture in the case of endomorphisms of semiabelian varieties.
引用
收藏
页码:633 / 639
页数:7
相关论文
共 50 条
  • [21] Arithmetic hyperbolicity and a stacky Chevalley-Weil theorem
    Javanpeykar, Ariyan
    Loughran, Daniel
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2021, 103 (03): : 846 - 869
  • [22] Fixed Points and Common Fixed Points for Orbit-Nonexpansive Mappings in Metric Spaces
    Rafael Espínola
    Maria Japón
    Daniel Souza
    Mediterranean Journal of Mathematics, 2023, 20
  • [23] Sequences Behavior and Applications
    Driss Drissi
    Mediterranean Journal of Mathematics, 2023, 20
  • [24] Which sequences are orbits?
    Daniel A. Nicks
    David J. Sixsmith
    Analysis and Mathematical Physics, 2021, 11
  • [25] Sequences Behavior and Applications
    Drissi, Driss
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (06)
  • [26] Fixed Points and Common Fixed Points for Orbit-Nonexpansive Mappings in Metric Spaces
    Espinola, Rafael
    Japon, Maria
    Souza, Daniel
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (03)
  • [27] Which sequences are orbits?
    Nicks, Daniel A.
    Sixsmith, David J.
    ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
  • [28] Bounded Rational Points on Curves
    Walsh, Miguel N.
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (14) : 5644 - 5658
  • [29] ON PERIODIC POINTS OF SYMPLECTOMORPHISMS ON SURFACES
    Batoreo, Marta
    PACIFIC JOURNAL OF MATHEMATICS, 2018, 294 (01) : 19 - 40
  • [30] A Survey of Some Arithmetic Applications of Ergodic Theory in Negative Curvature
    Parkkonen, Jouni
    Paulin, Frederic
    ERGODIC THEORY AND NEGATIVE CURVATURE, 2017, 2164 : 293 - 326