AN INTERNAL BOUNDARY VALUE PROBLEM WITH THE RIEMANN-LIOUVILLE OPERATOR FOR THE MIXED TYPE EQUATION OF THE THIRD ORDER

被引:0
|
作者
Repin, O. A. [1 ,2 ]
Kumykova, S. K. [3 ]
机构
[1] Samara State Econ Univ, Dept Math Stat & Econometr, 141 Sovetskoy Armii St, Samara 443090, Russia
[2] Samara State Tech Univ, Dept Appl Math & Comp Sci, 244 Molodogvardeyskaya St, Samara 443100, Russia
[3] Kabardino Balkarian State Univ, Dept Math Anal & Theory Funct, 173 Chernyshevskogo St, Nalchik 360004, Russia
来源
VESTNIK SAMARSKOGO GOSUDARSTVENNOGO TEKHNICHESKOGO UNIVERSITETA-SERIYA-FIZIKO-MATEMATICHESKIYE NAUKI | 2016年 / 20卷 / 01期
关键词
mixed type equation; Fredholm equation; Cauchy problem; fractional operators in the sense of Riemann-Liouville integro-differentiation;
D O I
10.14498/vsgtu1461
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The unique solvability of the internal boundary value problem is investigated for the mixed type equation of the third order with Riemann-Liouville operators in boundary condition. The uniqueness theorem is proved for the different orders of operators of fractional integro-differentiation when the inequality constraints on the known functions exist. The existence of solution is verified by the method of reduction to Fredholm equations of the second kind, which unconditional solvability follows from the uniqueness of the solution of the problem.
引用
收藏
页码:43 / 53
页数:11
相关论文
共 50 条