Statistical Redundancy Testing for Improved Gene Selection in Cancer Classification Using Microarray Data

被引:0
作者
Hu, Simin [1 ]
Rao, J. Sunil [1 ]
机构
[1] Case Western Reserve Univ, Dept Epidemiol & Biostat, Cleveland, OH 44106 USA
来源
CANCER INFORMATICS | 2007年 / 3卷
关键词
gene selection; microarray; cancer classification; statistical redundancy;
D O I
暂无
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
In gene selection for cancer classification using microarray data, we define an eigenvalue-ratio statistic to measure a gene's contribution to the joint discriminability when this gene is included into a set of genes. Based on this eigenvalueratio statistic, we define a novel hypothesis testing for gene statistical redundancy and propose two gene selection methods. Simulation studies illustrate the agreement between statistical redundancy testing and gene selection methods. Real data examples show the proposed gene selection methods can select a compact gene subset which can not only be used to build high quality cancer classifiers but also show biological relevance.
引用
收藏
页码:29 / 41
页数:13
相关论文
共 50 条
  • [41] A STUDY ON GENE SELECTION AND CLASSIFICATION ALGORITHMS FOR CLASSIFICATION OF MICROARRAY GENE EXPRESSION DATA
    Chin, Yeo Lee
    Deris, Safaai
    JURNAL TEKNOLOGI, 2005, 43
  • [42] A Review of Gene Selection Tools in Classifying Cancer Microarray Data
    Shi, Tham W.
    Kah, Wong S.
    Mohamad, Mohd S.
    Moorthy, Kohbalan
    Deris, Safaai
    Sjaugi, Muhammad F.
    Omatu, Sigeru
    Corchado, Juan M.
    Kasim, Shahreen
    CURRENT BIOINFORMATICS, 2017, 12 (03) : 202 - 212
  • [43] An improved elastic net for cancer classification and gene selection
    Li J.-T.
    Jia Y.-M.
    Zidonghua Xuebao/Acta Automatica Sinica, 2010, 36 (07): : 976 - 981
  • [44] Classification of breast cancer using microarray gene expression data: A survey
    Abd-Elnaby, Muhammed
    Alfonse, Marco
    Roushdy, Mohamed
    JOURNAL OF BIOMEDICAL INFORMATICS, 2021, 117
  • [45] Minimum redundancy maximum relevance and VNS based gene selection for cancer classification in high-dimensional data
    Bir-Jmel, Ahmed
    Douiri, Sidi Mohamed
    Elbernoussi, Souad
    INTERNATIONAL JOURNAL OF COMPUTATIONAL SCIENCE AND ENGINEERING, 2024, 27 (01) : 78 - 89
  • [46] Gene Selection Method for Microarray Data Classification Using Particle Swarm Optimization and Neighborhood Rough Set
    Ye, Mingquan
    Wang, Weiwei
    Yao, Chuanwen
    Fan, Rong
    Wang, Peipei
    CURRENT BIOINFORMATICS, 2019, 14 (05) : 422 - 431
  • [47] A hybrid filter/wrapper gene selection method for microarray classification
    Ni, B
    Liu, J
    PROCEEDINGS OF THE 2004 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2004, : 2537 - 2542
  • [48] Genetic Bee Colony (GBC) algorithm: A new gene selection method for microarray cancer classification
    Alshamlan, Hala M.
    Badr, Ghada H.
    Alohali, Yousef A.
    COMPUTATIONAL BIOLOGY AND CHEMISTRY, 2015, 56 : 49 - 60
  • [49] Interval-valued analysis for discriminative gene selection and tissue sample classification using microarray data
    Qi, Yunsong
    Yang, Xibei
    GENOMICS, 2013, 101 (01) : 38 - 48
  • [50] Gene selection and cancer microarray data classification via mixed-integer optimization
    Orsenigo, Carlotta
    EVOLUTIONARY COMPUTATION, MACHINE LEARNING AND DATA MINING IN BIOINFORMATICS, PROCEEDINGS, 2008, 4973 : 141 - 152