A CONTINUUM OF PRINCIPAL COMPONENT GENERALIZED LINEAR REGRESSIONS

被引:10
作者
MARX, BD [1 ]
机构
[1] LOUISIANA STATE UNIV, BATON ROUGE, LA 70803 USA
关键词
QUASISTANDARDIZATION; SCALING PARAMETER; WEIGHTED MULTICOLLINEARITY;
D O I
10.1016/0167-9473(92)90113-T
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The motivation of the paper is to present an option to maximum likelihood estimation when the information matrix is ill-conditioned. The impacts and diagnosis of ill-conditioned information are revisited. We combine ideas from Good and Smith [41 and Marx and Smith [10] to develop a class of principal component estimators, for generalized linear regression, defined by a scaling parameter. The additional parameter allows a spectrum of standardized explanatory variables which can yield interpolation between correlation and covariance matrices. We show that choice of the scaling parameter depends on the researcher's objectives for the model. A unit scaling parameter produces results of Marx and Smith [10]. If further restrictions of normal response data and the identity link function are imposed with an unit scaling parameter, we have traditional principal component multiple regression (Webster et al. [16]). We discuss the appropriateness of principal component regression. An illustrative example using Poisson response data and the log link function demonstrates the usefulness of the scaling parameter for a generalized linear regression with severely ill-conditioned information.
引用
收藏
页码:385 / 393
页数:9
相关论文
共 16 条
[1]  
AITKIN M, 1989, STATISTICAL MODELLIN
[2]  
Belsley D. A., 2005, REGRESSION DIAGNOSTI
[3]  
DOBSON AJ, 1983, INTRO STATISTICAL MO
[4]   A CONTINUUM OF PRINCIPAL COMPONENT METHODS [J].
GOOD, IJ ;
SMITH, EP .
JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1985, 23 (1-2) :136-142
[5]   RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS [J].
HOERL, AE ;
KENNARD, RW .
TECHNOMETRICS, 1970, 12 (01) :55-&
[6]  
Jolliffe I., 2002, PRINCIPAL COMPONENT
[7]   COLLINEARITY IN GENERALIZED LINEAR-MODELS [J].
MACKINNON, MJ ;
PUTERMAN, ML .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1989, 18 (09) :3463-3472
[8]   PRINCIPAL COMPONENT ESTIMATION FOR GENERALIZED LINEAR-REGRESSION [J].
MARX, BD ;
SMITH, EP .
BIOMETRIKA, 1990, 77 (01) :23-31
[9]  
MARX BD, 1990, J STATISTICAL COMPUT, V36, P193
[10]  
MARX BD, 1990, J STATISTICAL COMPUT, V37, P234