A Proposed Ridge Parameter to Improve the Least Squares Estimator

被引:14
作者
Khalaf, Ghadban [1 ,2 ]
机构
[1] King Khalid Univ, Dept Math, Stat, Abha, Saudi Arabia
[2] King Khalid Univ, Fac Sci, Abha, Saudi Arabia
关键词
Multicollinearity; ridge regression; Monte Carlo simulation;
D O I
10.22237/jmasm/1351743240
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Ridge regression, a form of biased linear estimation, is a more appropriate technique than ordinary least squares (OLS) estimation in the case of highly intercorrelated explanatory variables in the linear regression model (Y) over right arrow = X (beta) over right arrow + (mu) over right arrow Two proposed ridge regression parameters from the mean square error (MSE) perspective are evaluated. A simulation study was conducted to demonstrate the performance of the proposed estimators compared to the OLS, HK and HKB estimators. Results show that the suggested estimators outperform the OLS and the other estimators regarding the ridge parameters in all situations examined.
引用
收藏
页码:443 / 449
页数:7
相关论文
共 20 条
[11]   Performance of some new ridge regression estimators [J].
Kibria, BMG .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2003, 32 (02) :419-435
[12]   SIMULATION STUDY OF RIDGE AND OTHER REGRESSION ESTIMATORS [J].
LAWLESS, JF ;
WANG, P .
COMMUNICATIONS IN STATISTICS PART A-THEORY AND METHODS, 1976, A 5 (04) :307-323
[13]   THE USE OF LEAST-SQUARES FOR XPS PEAK PARAMETERS ESTIMATION .3. MULTICOLLINEARITY, ILL-CONDITIONING AND CONSTRAINT-INDUCED BIAS [J].
LECLERC, G ;
PIREAUX, JJ .
JOURNAL OF ELECTRON SPECTROSCOPY AND RELATED PHENOMENA, 1995, 71 (02) :179-190
[14]   MONTE-CARLO EVALUATION OF SOME RIDGE-TYPE ESTIMATORS [J].
MCDONALD, GC ;
GALARNEAU, DI .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1975, 70 (350) :407-416
[15]   On Some Ridge Regression Estimators: An Empirical Comparisons [J].
Muniz, Gisela ;
Kibria, B. M. Golam .
COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2009, 38 (03) :621-630
[16]   A PROCEDURE FOR DETERMINATION OF A GOOD RIDGE PARAMETER IN LINEAR-REGRESSION [J].
NORDBERG, L .
COMMUNICATIONS IN STATISTICS PART B-SIMULATION AND COMPUTATION, 1982, 11 (03) :285-309
[17]   PERFORMANCE OF SOME NEW PRELIMINARY TEST RIDGE-REGRESSION ESTIMATORS AND THEIR PROPERTIES [J].
SALEH, AKME ;
KIBRIA, BMG .
COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1993, 22 (10) :2747-2764
[18]  
Singh Sarjinder, 1999, METRON, V41, P147
[19]   Estimation of the signal-to-noise in the linear regression model [J].
Wencheko, E .
STATISTICAL PAPERS, 2000, 41 (03) :327-343
[20]   COMPARISON OF RIDGE ESTIMATORS [J].
WICHERN, DW ;
CHURCHILL, GA .
TECHNOMETRICS, 1978, 20 (03) :301-311