CONVERGENCE OF A GENERALIZED SUBGRADIENT METHOD FOR NONDIFFERENTIABLE CONVEX-OPTIMIZATION

被引:28
作者
KIM, S
AHN, H
机构
[1] Department of Management Science, Korea Advanced Institute of Science and Technology, Chongryang, Seoul
关键词
SUBGRADIENT METHOD; EPSILON-SUBGRADIENT; NONDIFFERENTIABLE OPTIMIZATION;
D O I
10.1007/BF01594925
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
A generalized subgradient method is considered which uses the subgradients at previous iterations as well as the subgradient at current point. This method is a direct generalization of the usual subgradient method. We provide two sets of convergence conditions of the generalized subgradient method. Our results provide a larger class of sequences which converge to a minimum point and more freedom of adjustment to accelerate the speed of convergence.
引用
收藏
页码:75 / 80
页数:6
相关论文
共 22 条
[1]  
Camerini P.M., 1975, MATH PROGRAMMING STU, P26, DOI DOI 10.1007/BFB0120697
[2]  
CHEPURNOJ ND, 1982, KIBERNETIKA, P127
[3]  
CHEPURNOJ ND, 1987, WP8762 IIASA
[4]  
Demyanov V.F., 1985, NONDIFFERENTIABLE OP
[5]  
ERMOLEV JM, 1967, KIBERNETIKA, P101
[6]  
ERMOLEV JM, 1976, STOCHASTIC PROGRAMMI
[7]  
GLUSHKOVA OV, 1980, KIBERNETIKA, P128
[8]  
GUPAL AM, 1972, KIBERNETIKA, P125
[9]   2-DIRECTION SUBGRADIENT METHOD FOR NON-DIFFERENTIABLE OPTIMIZATION PROBLEMS [J].
KIM, S ;
KOH, S ;
AHN, H .
OPERATIONS RESEARCH LETTERS, 1987, 6 (01) :43-46
[10]  
KIM S, IN PRESS J OPTIMIZAT