COMPUTING THE BINDING NUMBER OF A GRAPH

被引:15
作者
CUNNINGHAM, WH
机构
[1] Department of Mathematics and Statistics, Carleton University, Ottawa
关键词
D O I
10.1016/0166-218X(90)90072-K
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The binding number of a graph G = (V,E) is min(|N(A)|{plus 45 degree rule}|A|: Ø≠A⊆V,N(A)≠V), where N(A) is the set of neighbours of A. This invariant is shown to be computable in polynomial time. © 1990.
引用
收藏
页码:283 / 285
页数:3
相关论文
共 9 条
[1]  
[Anonymous], 1983, DATA STRUCTURES NETW, DOI DOI 10.1137/1.9781611970265
[2]  
[Anonymous], 1971, J COMBIN THEORY
[3]  
BAUER D, 1988, RECOGNIZING TOUGH GR
[4]  
Chvatal V., 1973, Discrete Mathematics, V5, P215, DOI 10.1016/0012-365X(73)90138-6
[5]   OPTIMAL ATTACK AND REINFORCEMENT OF A NETWORK [J].
CUNNINGHAM, WH .
JOURNAL OF THE ACM, 1985, 32 (03) :549-561
[6]   A FAST PARAMETRIC MAXIMUM FLOW ALGORITHM AND APPLICATIONS [J].
GALLO, G ;
GRIGORIADIS, MD ;
TARJAN, RE .
SIAM JOURNAL ON COMPUTING, 1989, 18 (01) :30-55
[7]  
Gondran M, 1984, GRAPHS ALGORITHMS
[8]  
GUSFIELD D, 1987, COMPUTING STRENGTH N
[9]  
Woodall D. R., 1973, Journal of Combinatorial Theory, Series B, V15, P225, DOI 10.1016/0095-8956(73)90038-5