Analyzing microtomography data with Python']Python and the scikit-image library

被引:23
|
作者
Gouillart, Emmanuelle [1 ]
Nunez-Iglesias, Juan [2 ]
van der Walt, Stefan [3 ]
机构
[1] St Gobain, CNRS, UMR 125, Surface Verre & Interfaces, F-93303 Aubervilliers, France
[2] Univ Melbourne, Victorian Life Sci Computat Initiat, Carlton, Vic, Australia
[3] Stellenbosch Univ, Div Appl Math, Stellenbosch, South Africa
来源
ADVANCED STRUCTURAL AND CHEMICAL IMAGING | 2016年 / 2卷
关键词
Scikit-image; !text type='Python']Python[!/text; Image processing library; 3D image;
D O I
10.1186/s40679-016-0031-0
中图分类号
TH742 [显微镜];
学科分类号
摘要
The exploration and processing of images is a vital aspect of the scientific workflows of many X-ray imaging modalities. Users require tools that combine interactivity, versatility, and performance. scikit-image is an open-source image processing toolkit for the Python language that supports a large variety of file formats and is compatible with 2D and 3D images. The toolkit exposes a simple programming interface, with thematic modules grouping functions according to their purpose, such as image restoration, segmentation, and measurements. scikit-image users benefit from a rich scientific Python ecosystem that contains many powerful libraries for tasks such as visualization or machine learning. scikit-image combines a gentle learning curve, versatile image processing capabilities, and the scalable performance required for the high-throughput analysis of X-ray imaging data.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] A Python']Python library for FAIRer access and deposition to the Metabolomics Workbench Data Repository
    Smelter, Andrey
    Moseley, Hunter N. B.
    METABOLOMICS, 2018, 14 (05)
  • [42] readPTU: a python']python library to analyse time tagged time resolved data
    Ballesteros, G. C.
    Proux, R.
    Bonato, C.
    Gerardot, B. D.
    JOURNAL OF INSTRUMENTATION, 2019, 14
  • [43] PyDPLib: Python']Python Differential Privacy Library for Private Medical Data Analytics
    Imtiaz, Sana
    Matthies, Philipp
    Pinto, Francisco
    Maros, Mate
    Wenz, Holger
    Sadre, Ramin
    Vlassov, Vladimir
    2021 IEEE INTERNATIONAL CONFERENCE ON DIGITAL HEALTH (ICDH 2021), 2021, : 191 - 196
  • [44] Razorback, an Open Source Python']Python Library for Robust Processing of Magnetotelluric Data
    Smai, Farid
    Wawrzyniak, Pierre
    FRONTIERS IN EARTH SCIENCE, 2020, 8
  • [45] A Python']Python library for probabilistic analysis of single-cell omics data
    Gayoso, Adam
    Lopez, Romain
    Xing, Galen
    Boyeau, Pierre
    Amiri, Valeh Valiollah Pour
    Hong, Justin
    Wu, Katherine
    Jayasuriya, Michael
    Mehlman, Edouard
    Langevin, Maxime
    Liu, Yining
    Samaran, Jules
    Misrachi, Gabriel
    Nazaret, Achille
    Clivio, Oscar
    Xu, Chenling
    Ashuach, Tal
    Gabitto, Mariano
    Lotfollahi, Mohammad
    Svensson, Valentine
    Beltrame, Eduardo da Veiga
    Kleshchevnikov, Vitalii
    Talavera-Lopez, Carlos
    Pachter, Lior
    Theis, Fabian J.
    Streets, Aaron
    Jordan, Michael I.
    Regier, Jeffrey
    Yosef, Nir
    NATURE BIOTECHNOLOGY, 2022, 40 (02) : 163 - 166
  • [46] py_ciu_image: A Python']Python Library for Explaining Image Classification with Contextual Importance and Utility
    Framling, Kary
    Apopei, Ioan-Vlad
    Pihlgren, Gustav Grund
    Malhi, Avleen
    EXPLAINABLE AND TRANSPARENT AI AND MULTI-AGENT SYSTEMS, EXTRAAMAS 2024, 2024, 14847 : 184 - 188
  • [47] Testing Linear Regressions by StatsModel Library of Python']Python for Oceanological Data Interpretation
    Lemenkova, Polina
    AQUATIC SCIENCES AND ENGINEERING, 2019, 34 (02): : 51 - 60
  • [48] ANALYZING THE PyGameGUI MODULES AVAILABLE IN PYTHON']PYTHON
    Kumari, Rachana
    Fancy, C.
    2017 IEEE INTERNATIONAL CONFERENCE ON IOT AND ITS APPLICATIONS (IEEE ICIOT), 2017,
  • [49] PYMIGBENCH: A Benchmark for Python']Python Library Migration
    Islam, Mohayeminul
    Jha, Ajay Kumar
    Nadi, Sarah
    Akhmetov, Ildar
    2023 IEEE/ACM 20TH INTERNATIONAL CONFERENCE ON MINING SOFTWARE REPOSITORIES, MSR, 2023, : 511 - 515
  • [50] Modelling the Turtle Python']Python library in CSP
    MacConville, Dara
    Farrell, Marie
    Luckcuck, Matt
    Monahan, Rosemary
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2022, (354): : 15 - 22