Forest plot volume estimation using National Forest Inventory, Forest Type Map and Airborne LiDAR data

被引:3
|
作者
Park, Taejin [1 ]
Lee, Woo-Kyun [1 ]
Lee, Jong-Yeol [1 ]
Byun, Woo-Hyuk [1 ]
Kwak, Doo-Ahn [2 ]
Cui, Guishan [1 ]
Kim, Moon-Il [1 ]
Jung, Raesun [1 ]
Pujiono, Eko [1 ]
Oh, Suhyun [3 ]
Byun, Jungyeon [1 ]
Nam, Kijun [1 ]
Cho, Hyun-Kook [4 ]
Lee, Jung-Su [5 ]
Chung, Dong-Jun [6 ]
Kim, Sung-Ho [4 ]
机构
[1] Korea Univ, Div Environm Sci & Ecol Engn, Seoul 136713, South Korea
[2] Korea Univ, Environm GIS RS Ctr, Seoul 136713, South Korea
[3] Korea Univ, Grad Sch Life & Environm Sci, Dept Climate Environm, Seoul 136713, South Korea
[4] Korea Forest Res Inst, Div Forest Resources Informat, Seoul 136012, South Korea
[5] Kangwon Natl Univ, Coll Forest Environm Sci, Dept Forest Management, Chunchon 200701, South Korea
[6] Natl Forest Cooperat Federat, Natl Forest Resource Inventory Ctr, Seoul 138880, South Korea
基金
新加坡国家研究基金会;
关键词
airborne LiDAR; forest plot volume; Forest Type Map; linear regression analysis; National Forest Inventory;
D O I
10.1080/21580103.2012.673749
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
The importance of estimating forest volume has been emphasized by increasing interest on carbon sequestration and storage which can be converted from volume estimates. With importance of forest volume, there are growing needs for developing efficient and unbiased estimation methods for forest volume using reliable data sources such as the National Forest Inventory (NFI) and supplementary information. Therefore, this study aimed to develop a forest plot volume model using selected explanatory variables from each data type (only Forest Type Map (FTM), only airborne LiDAR and both datasets), and verify the developed models with forest plot volumes in 60 test plots with the help of the NFI dataset. In linear regression modeling, three variables (LiDAR height sum, age, and crown density class) except diameter class were selected as explanatory independent variables. These variables generated the four forest plot volume models by combining the variables of each data type. To select an optimal forest plot volume model, a statistical comparing process was performed between four models. In verification, Model no. 3 constructed by both FTM and airborne LiDAR was selected as an optimal forest plot volume model through comparing root mean square error (RMSE) and coefficient of determination (R-2). The selected best performance model can predict the plot volume derived from NFI with RMSE and R-2 at 50.41 (m(3)) and 0.48, respectively.
引用
收藏
页码:89 / 98
页数:10
相关论文
共 50 条
  • [1] A nationwide forest attribute map of Sweden predicted using airborne laser scanning data and field data from the National Forest Inventory
    Nilsson, Mats
    Nordkvist, Karin
    Jonzen, Jonas
    Lindgren, Nils
    Axensten, Peder
    Wallerman, Jorgen
    Egberth, Mikael
    Larsson, Svante
    Nilsson, Liselott
    Eriksson, Johan
    Olsson, Hakan
    REMOTE SENSING OF ENVIRONMENT, 2017, 194 : 447 - 454
  • [2] Effects of lidar coverage and field plot data numerosity on forest growing stock volume estimation
    D'Amico, Giovanni
    McRoberts, Ronald E.
    Giannetti, Francesca
    Vangi, Elia
    Francini, Saverio
    Chirici, Gherardo
    EUROPEAN JOURNAL OF REMOTE SENSING, 2022, 55 (01) : 199 - 212
  • [3] Subtropical forest biomass estimation using airborne LiDAR and Hyperspectral data
    Pang, Yong
    Li, Zengyuan
    Meng, Shili
    Jia, Wen
    Liu, Luxia
    XXIII ISPRS CONGRESS, COMMISSION VIII, 2016, 41 (B8): : 747 - 749
  • [4] Estimation of forest surface fuel load using airborne LiDAR data
    Chen, Yang
    Zhu, Xuan
    Yebra, Marta
    Harris, Sarah
    Tapper, Nigel
    EARTH RESOURCES AND ENVIRONMENTAL REMOTE SENSING/GIS APPLICATIONS VII, 2016, 10005
  • [5] Estimation of Forest Biomass based upon Satellite Data and National Forest Inventory Data
    Yim, Jong Su
    Han, Won Sung
    Hwang, Joo Ho
    Chung, Sang Young
    Cho, Hyun Kook
    Shin, Man Yong
    KOREAN JOURNAL OF REMOTE SENSING, 2009, 25 (04) : 311 - 320
  • [6] A brief overview and perspective of using airborne Lidar data for forest biomass estimation
    Lu, Dengsheng
    Jiang, Xiandie
    INTERNATIONAL JOURNAL OF IMAGE AND DATA FUSION, 2024, 15 (01) : 1 - 24
  • [7] Using airborne LiDAR to map forest microclimate temperature buffering or amplification
    Gril, Eva
    Laslier, Marianne
    Gallet-Moron, Emilie
    Durrieu, Sylvie
    Spicher, Fabien
    Le Roux, Vincent
    Brasseur, Boris
    Haesen, Stef
    Van Meerbeek, Koenraad
    Decocq, Guillaume
    Marrec, Ronan
    Lenoir, Jonathan
    REMOTE SENSING OF ENVIRONMENT, 2023, 298
  • [8] Effects of national forest inventory plot location error on forest carbon stock estimation using k-nearest neighbor algorithm
    Jung, Jaehoon
    Kim, Sangpil
    Hong, Sungchul
    Kim, Kyoungmin
    Kim, Eunsook
    Im, Jungho
    Heo, Joon
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2013, 81 : 82 - 92
  • [9] Estimation of aboveground forest biomass in Galicia (NW Spain) by the combined use of LiDAR, LANDSAT ETM plus and National Forest Inventory data
    Jimenez, Enrique
    Vega, Jose A.
    Fernandez-Alonso, Jose M.
    Vega-Nieva, Daniel
    Ortiz, Luis
    Lopez-Serrano, Pablito M.
    López-Sánchez, Carlos A.
    IFOREST-BIOGEOSCIENCES AND FORESTRY, 2017, 10 : 590 - 596
  • [10] Forest emissions reduction assessment using airborne LiDAR for biomass estimation
    Qin, Shize
    Nie, Sheng
    Guan, Yusheng
    Zhang, Da
    Wang, Cheng
    Zhang, Xiliang
    RESOURCES CONSERVATION AND RECYCLING, 2022, 181