Families of exact traveling wave solutions to the space time fractional modified KdV equation and the fractional Kolmogorov-Petrovskii-Piskunovequation

被引:18
|
作者
Uddin, M. Hafiz [1 ]
Akbar, M. Ali [2 ]
Khan, Md. Ashrafuzzaman [2 ]
Haque, Md. Abdul [2 ]
机构
[1] Jessore Univ Sci & Technol, Dept Math, Jessore, Bangladesh
[2] Univ Rajshahi, Dept Appl Math, Rajshahi, Bangladesh
来源
JOURNAL OF MECHANICS OF CONTINUA AND MATHEMATICAL SCIENCES | 2018年 / 13卷 / 01期
关键词
Exact solution; fractional modified KdV equation; Kolmogorov-Petrovskii-Piskunov equation; modified Remann-Liouville derivative; traveling wave solution; solitary wave solution;
D O I
10.26782/jmcms.2018.04.00002
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The space time fractional modified KdV equation and fractional Kolmogorov-Petrovskii-Piskunov (KPP) equation models the unidirectional and bidirectional waves on shallow water surfaces, long internal wave in a density-stratified ocean, ion acoustic waves in plasma, acoustic waves on a crystal lattice. The fractional derivatives are defined in the modified Riemann-Liouville sense. In this article, we obtain exact solution of these equations by means of the recently established two variables (G'/G, 1/G) - expansion method. The solutions are obtained in the form of hyperbolic, trigonometric and rational functions involving parameters. When the parameters are assigned particular values, the solitary wave solutions are generated from the traveling wave solutions. The method indicates that it is easy to implement, computationally attractive and is the general form of the original (G'/G) - expansion method.
引用
收藏
页码:17 / 33
页数:17
相关论文
共 50 条
  • [1] Traveling-Wave Solutions of the Kolmogorov-Petrovskii-Piskunov Equation
    Pikulin, S. V.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2018, 58 (02) : 230 - 237
  • [2] Bifurcation and new exact traveling wave solutions to time-space coupled fractional nonlinear Schrodinger equation
    Han, Tianyong
    Li, Zhao
    Zhang, Xue
    PHYSICS LETTERS A, 2021, 395
  • [3] Traveling wave solutions for space-time fractional Cahn Hilliard equation and space-time fractional symmetric regularized long-wave equation
    Khan, Muhammad Asim
    Akbar, M. Ali
    Abd Hamid, Nur Nadiah Binti
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 1317 - 1324
  • [4] Exact Solutions of Kolmogorov-Petrovskii-Piskuuov Equation Using the Modified Simple Equation Method
    Zayed, E. M. E.
    Ibrahim, S. A. Hoda
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2014, 30 (03): : 749 - 754
  • [5] Exact Solutions of Kolmogorov-Petrovskii-Piskunov Equation Using the Modified Simple Equation Method
    E.M.E.Zayed
    S.A.Hoda Ibrahim
    Acta Mathematicae Applicatae Sinica, 2014, (03) : 749 - 754
  • [6] Exact solutions of Kolmogorov-Petrovskii-Piskunov equation using the modified simple equation method
    E. M. E. Zayed
    S. A. Hoda Ibrahim
    Acta Mathematicae Applicatae Sinica, English Series, 2014, 30 : 749 - 754
  • [7] Lie symmetry analysis, conservation laws and analytic solutions of the time fractional Kolmogorov-Petrovskii-Piskunov equation
    Qin, Chun-Yan
    Tian, Shou-Fu
    Wang, Xiu-Bin
    Zou, Li
    Zhang, Tian-Tian
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (04) : 1734 - 1742
  • [8] Adequate soliton solutions to the space–time fractional telegraph equation and modified third-order KdV equation through a reliable technique
    Mohammad Asif Arefin
    Umme Sadiya
    Mustafa Inc
    M. Hafiz Uddin
    Optical and Quantum Electronics, 2022, 54
  • [9] Traveling wave solutions for time-fractional K(m, n) equation
    Zaidan, Lahib Ibrahim
    Darvishi, M. T.
    OPTIK, 2017, 142 : 564 - 575
  • [10] Adequate soliton solutions to the space-time fractional telegraph equation and modified third-order KdV equation through a reliable technique
    Arefin, Mohammad Asif
    Sadiya, Umme
    Inc, Mustafa
    Uddin, M. Hafiz
    OPTICAL AND QUANTUM ELECTRONICS, 2022, 54 (05)