POLLEN APERTURE POLYMORPHISM IN THE ANGIOSPERMS - IMPORTANCE, POSSIBLE CAUSES AND CONSEQUENCES

被引:53
作者
MIGNOT, A
HOSS, C
DAJOZ, I
LEURET, C
HENRY, JP
DREUILLAUX, JM
HEBERLEBORS, E
TILLBOTTRAUD, I
机构
[1] Laboratoire d'Evolution et Systématique des Végétaux, CNRS URA 1492, Université Paris-Sud, Orsay Cedex, F-91405
[2] Laboratoire d'Ecologie, CNRS URA 258, Ecole Normale Supérieure, Paris Cedex 05, F-75230, 46, rue d'Ulm
[3] Laboratoire de Génétique moléculaire des Plantes, CNRS URA 115, Université Paris-Sud, Orsay Cedex, F-91405
[4] Laboratoire de Biologie végétale: Populations et Communautés, CNRS URA 1492, Université Paris-Sud, Orsay Cedex, F-91405
[5] Institute of Microbiology and Genetics, University of Vienna, Vienna Biocenter, Wien, A-1030
关键词
POLLEN; APERTURE NUMBER; PLOIDY; POLYMORPHISM; HETEROMORPHISM;
D O I
10.1080/12538078.1994.10515144
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
To investigate the evolutionary mechanisms that produced the great diversity of pollen morphology, we concentrated on pollen aperture polymorphism. Possible selective forces and evolutionary mechanisms have been investigated previously. In this paper, we aim to test the predictions of a theoretical model and to evaluate the influence of ploidy on pollen aperture polymorphism. A survey of 186 species showed that pollen aperture number variation occurs mainly as different types in all plants (heteromorphism) whereas genetic polymorphism is related to heterostyly. Sporophytic ploidy increases the mean aperture number by shifting the mode to higher-aperturate pollen. However, the different types found within a plant do not correspond to reduced and unreduced gametophytes. The evolutionary consequences of these results are discussed.
引用
收藏
页码:109 / 122
页数:14
相关论文
共 36 条
[1]  
Alexander M.P., Differential staining of aborted and nonaborted pollen, Stain Technology, 44, pp. 117-122, (1969)
[2]  
Barrett S.C.H., The evolution and adaptative significance of heterostyly, Trends in Ecology and Evolution, 5, 5, pp. 144-148, (1990)
[3]  
Bessedik M., Le genre Buxus L. (Nagyipollis Kedves 1962) au tertiaire en Europe occidentale: Evolution et implications palöogóographiques, Pollen et Spores, 25, pp. 461-486, (1983)
[4]  
Bidault M., Relations entre la polyploïdie, les longueurs de cellules épidermiques et le diamètre des grains de pollen chez quelques types de Festuca ovina L. s.l, Bull. Soc. bot. Fr., 111, 3-4, pp. 111-119, (1964)
[5]  
Brown S.C., Bergounloux C., Tallet S., Marie D., Flow cytometry of nuclei for ploidy and cell cycle analysis, A laboratory guide for cellular and molecular plant biology, (1991)
[6]  
Brown S.C., Devaux P., Marie D., Bergounioux C., Petit P.X., Analyse de la ploïdie par cytométrie en flux, Biofutur, 47, 105, pp. 2-16, (1991)
[7]  
Cartier D., Etude biosystématique de quelques espèces du genre Plantago (Tourn.) L. I. - Historique, races chromosomiques du Plantago alpina L. et du Plantago serpentina All, Rev. gén. Bot., 78, pp. 493-556, (1971)
[8]  
Cavalier-Smith T., Nuclear volume control by nucleoskeletal DNA, selection for cell volume and cell growth rate, and the solution of the DNA C-value paradox, J. cell. Sd., 34, pp. 247-278, (1978)
[9]  
Chaloner W.G., The evolution of adaptative features in fossil exines, The evolutionary significance of the exine, 1, pp. 1-14, (1976)
[10]  
Coleman A.W., Goff L.J., Applications of fluorochromes to pollen biology. I - mithramycin and 4', 6-diamidino-2-phenylindole (DAPI) as vital stains and for quantification of nuclear DNA, Stain Technology, 60, pp. 145-154, (1985)