Topological semigroups of matrix units

被引:0
|
作者
Gutik, Oleg V. [1 ,2 ]
Pavlyk, Kateryna P. [1 ]
机构
[1] Natl Acad Sci, Pidstryhach Inst Appl Problems Mech & Math, Dept Algebra, Naukova 3b, UA-79060 Lvov, Ukraine
[2] Ivan Franko Lviv Natl Univ, Dept Math, UA-79000 Lvov, Ukraine
来源
ALGEBRA & DISCRETE MATHEMATICS | 2005年 / 03期
关键词
semigroup of matrix units; semitopological semigroup; topological semigroup; topological inverse semigroup; H-closed semigroup; absolutely H-closed semigroup; algebraically h-closed semigroup; Bohr compactification; minimal topological semigroup; minimal semigroup topology;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that the semigroup of matrix units is stable. Compact, countably compact and pseudocompact topologies tau on the infinite semigroup of matrix units B lambda such that (B lambda,tau) is a semitopological (inverse) semigroup are described. We prove the following properties of an infinite topological semigroup of matrix units. On the infinite semigroup of matrix units there exists no semigroup pseudocompact topology. Any continuous homomorphism from the infinite topological semigroup of matrix units into a compact topological semigroup is annihilating. The semigroup of matrix units is algebraically h-closed in the class of topological inverse semigroups. Some H-closed minimal semigroup topologies on the infinite semigroup of matrix units are considered.
引用
收藏
页码:1 / 17
页数:17
相关论文
共 50 条
  • [1] On topological semigroups of matrix units
    Gutik, OV
    Pavlyk, KP
    SEMIGROUP FORUM, 2005, 71 (03) : 389 - 400
  • [2] On Topological Semigroups of Matrix Units
    Oleg V. Gutik
    Kateryna P. Pavlyk
    Semigroup Forum, 2005, 71 : 389 - 400
  • [3] Embedding of countable topological semigroups in simple countable connected topological semigroups
    Gutik O.V.
    Journal of Mathematical Sciences, 2001, 104 (5) : 1422 - 1427
  • [4] Topological Brandt semigroups
    H. Samea
    Semigroup Forum, 2013, 86 : 404 - 412
  • [5] Topological Brandt semigroups
    Samea, H.
    SEMIGROUP FORUM, 2013, 86 (02) : 404 - 412
  • [6] Topological inverse semigroups
    ZHU Yongwen Department of Mathematics and Information Science
    Journal of Chongqing University(English Edition), 2004, (01) : 82 - 85
  • [7] On topological McAlister semigroups
    Bardyla, Serhii
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2023, 227 (04)
  • [8] On topological Brandt semigroups
    O. V. Gutik
    K. P. Pavlyk
    A. R. Reiter
    Journal of Mathematical Sciences, 2012, 184 (1) : 1 - 11
  • [9] JOHNSON AMENABILITY FOR TOPOLOGICAL SEMIGROUPS
    Sadr, M. Maysami
    Pourabbas, A.
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2010, 34 (A2): : 151 - 160
  • [10] Topological graph inverse semigroups
    Mesyan, Z.
    Mitchell, J. D.
    Morayne, M.
    Peresse, Y. H.
    TOPOLOGY AND ITS APPLICATIONS, 2016, 208 : 106 - 126