LARGE DEVIATIONS FOR THE MAXIMUM LOCAL TIME OF STABLE LEVY PROCESSES

被引:10
作者
LACEY, M
机构
关键词
D O I
10.1214/aop/1176990640
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
引用
收藏
页码:1669 / 1675
页数:7
相关论文
共 13 条
[1]   CONTINUITY OF LOCAL-TIMES FOR LEVY PROCESSES [J].
BARLOW, MT .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 69 (01) :23-35
[2]   BRUNN-MINKOWSKI INEQUALITY IN GAUSS SPACE [J].
BORELL, C .
INVENTIONES MATHEMATICAE, 1975, 30 (02) :207-216
[3]  
BOYLAN ES, 1964, ILLINOIS J MATH, V8, P19
[4]  
CZAKI E, 1989, INTEGRAL TEST SUPREM
[5]  
DAVIS B, 1986, LECT NOTES MATH, V1247, P218
[6]   LAWS OF ITERATED LOGARITHM FOR LOCAL TIMES [J].
DONSKER, MD ;
VARADHAN, SRS .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1977, 30 (06) :707-753
[7]  
Dudley R. M., 1967, J FUNCT ANAL, V1, P290, DOI DOI 10.1016/0022-1236(67)90017-1
[8]  
GETOOR RK, 1972, COMPOS MATH, V24, P277
[9]   SOME LIMIT-THEOREMS FOR EMPIRICAL PROCESSES [J].
GINE, E ;
ZINN, J .
ANNALS OF PROBABILITY, 1984, 12 (04) :929-989
[10]   LAWS OF THE ITERATED LOGARITHM FOR SYMMETRIC STABLE PROCESSES [J].
GRIFFIN, PS .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1985, 68 (03) :271-285