GEOMETRY OF GROUPS PSL3(Q)

被引:4
|
作者
DEMBOWSKI, P
机构
关键词
D O I
10.1007/BF01109834
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:125 / +
页数:1
相关论文
共 50 条
  • [31] A Characterization of PSL(3. q) for q=2~m
    A.IRANMANESH
    S.H.ALAVI
    B.KHOSRAVI
    ActaMathematicaSinica(EnglishSeries), 2002, 18 (03) : 463 - 472
  • [32] GROUPS PSL(L+1)P AS GALOIS-GROUPS OVER Q
    NUZHIN, YN
    DOKLADY AKADEMII NAUK, 1994, 339 (01) : 18 - 20
  • [33] Discrete parabolic groups in PSL(3, C)
    Barrera, Waldemar
    Cano, Angel
    Navarrete, Juan Pablo
    Seade, Jose
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 653 : 430 - 500
  • [34] Huppert's Analogue Conjecture for PSL(3, q) and PSU(3, q)
    Liu, Yang
    Yang, Yong
    RESULTS IN MATHEMATICS, 2023, 78 (01)
  • [35] FINDING CONJUGATE STABILIZER SUBGROUPS IN PSL(2; q) AND RELATED GROUPS
    Denney, Aaron
    Moore, Cristopher
    Russell, Alexander
    QUANTUM INFORMATION & COMPUTATION, 2010, 10 (3-4) : 282 - 291
  • [36] On the rank two geometries of the groups PSL (2, q): part II
    Buekenhout, Francis
    De Saedeleer, Julie
    Leemans, Dimitri
    ARS MATHEMATICA CONTEMPORANEA, 2013, 6 (02) : 365 - 388
  • [37] Finding conjugate stabilizer subgroups in PSL(2;q) and related groups
    Denney, Aaron
    Moore, Cristopher
    Russell, Alexander
    Quantum Information and Computation, 2010, 10 (3-4): : 0282 - 0291
  • [38] PSL(2,q) quotients of some hyperbolic tetrahedral and coxeter groups
    Paoluzzi, L
    COMMUNICATIONS IN ALGEBRA, 1998, 26 (03) : 759 - 778
  • [39] On the rank two geometries of the groups PSL(2, q): part I
    De Saedeleer, Julie
    Leemans, Dimitri
    ARS MATHEMATICA CONTEMPORANEA, 2010, 3 (02) : 177 - 192
  • [40] The limit set of subgroups of arithmetic groups in PSL(2, C)q x PSL(2, R)r
    Geninska, Slavyana
    GROUPS GEOMETRY AND DYNAMICS, 2014, 8 (04) : 1047 - 1099