Approximation properties of (p, q)-Bernstein type operators

被引:3
作者
Finta, Zoltan [1 ]
机构
[1] Univ Babes Bolyai, Dept Math, R-3400 Cluj Napoca, Romania
关键词
(p; q)-integers; q)-Bernstein operators; limit; q)-Bernstein operator; q)-Kantorovich operators; rate of convergence; modulus of continuity;
D O I
10.1515/ausm-2016-0014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce a new generalization of the q-Bernstein operators involving (p, q)-integers, and we establish some direct approximation results. Further, we define the limit (p, q)-Bernstein operator, and we obtain its estimation for the rate of convergence. Finally, we introduce the (p, q)-Kantorovich type operators, and we give a quantitative estimation.
引用
收藏
页码:222 / 232
页数:11
相关论文
共 16 条
[1]  
Aral A., 2012, APPL Q CALCULUS OPER
[2]  
Gauchman H, 2004, COMPUT MATH APPL, V47, P281, DOI [10.1016/S0898-1221(04)90025-9, 10.1016/S0898-1221(04)00012-4]
[3]  
Gupta V., 2014, CONVERGENCE ESTIMATE
[4]   Convergence of generalized Bernstein polynomials [J].
Il'inskii, A ;
Ostrovska, S .
JOURNAL OF APPROXIMATION THEORY, 2002, 116 (01) :100-112
[5]  
Kac V.G., 2002, QUANTUM CALCULUS
[6]  
Khan K., ARXIV150501810CSGR
[7]  
Lupas A., 1987, SEMINAR NUMERICAL ST, V9, P85
[8]   The inequalities for some types of q-integrals [J].
Marinkovic, Sladjana ;
Rajkovic, Predrag ;
Stankovic, Miomir .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2008, 56 (10) :2490-2498
[9]   On (p, q)-analogue of Bernstein operators [J].
Mursaleen, M. ;
Ansari, Khursheed J. ;
Khan, Asif .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 266 :874-882
[10]  
Mursaleen M., 2016, ARXIV150405887V4MATH