A MATHEMATICAL-MODEL OF PERMEABILITY ALTERATION AROUND WELLS

被引:1
|
作者
OLAREWAJU, JS
机构
[1] Texas A&M University, College Station, Texas, 77842
关键词
D O I
10.1002/nag.1610140303
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
This paper presents an analytical solution of the permeability alteration problem around the wellbore. This alteration may be a permeability reduction due to drilling fluid invasion or mudcake formation around the wellbore. On the other hand, the alteration may be a permeability increase resulting from stimulation by acidizing the formation matrix around the well. This permeability discontinuity in a reservoir forms a composite reservoir system. With the composite model, both the degree and the radial extent of permeability alteration can be adequately predicted. The conventional skin concept is inadequate and physically unrealistic in most of these cases. This paper describes the application of an automatic weighted constrained least‐squares parameter estimation technique and the analytical model for pressure transient analysis. The parameters of the composite reservoir system are determined from a match of the pressure transient data. The behaviour of the pressure transient in such composite systems is presented using the analytical solution. Copyright © 1990 John Wiley & Sons, Ltd
引用
收藏
页码:191 / 207
页数:17
相关论文
共 50 条
  • [21] ON A MATHEMATICAL-MODEL IN BIOPIEZOELECTRICITY
    GUPTA, M
    SINHA, DK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1980, 11 (04): : 522 - 526
  • [22] A MATHEMATICAL-MODEL FOR A WAKE
    TEPPER, DE
    MICHIGAN MATHEMATICAL JOURNAL, 1984, 31 (02) : 161 - 165
  • [23] THE MATHEMATICAL-MODEL OF THE ALGORITHMS
    OGLU, HRH
    IZVESTIYA AKADEMII NAUK AZERBAIDZHANSKOI SSR SERIYA FIZIKO-TEKHNICHESKIKH I MATEMATICHESKIKH NAUK, 1983, 4 (04): : 155 - 158
  • [24] MATHEMATICAL-MODEL OF COCHLEA
    INSELBER.A
    CHADWICK, RS
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A255 - A255
  • [25] A MATHEMATICAL-MODEL FOR INTERMITTENCY
    OMNES, R
    JOURNAL DE PHYSIQUE, 1985, 46 (08): : 1319 - 1323
  • [26] A MATHEMATICAL-MODEL OF THE RUMEN
    FRANCE, J
    THORNLEY, JHM
    BEEVER, DE
    JOURNAL OF AGRICULTURAL SCIENCE, 1982, 99 (OCT): : 343 - 353
  • [27] MATHEMATICAL-MODEL OF ISOTACHOPHORESIS
    ZHUKOV, MI
    IUDOVICH, VI
    DOKLADY AKADEMII NAUK SSSR, 1982, 267 (02): : 334 - 338
  • [28] PLURALIZATION - MATHEMATICAL-MODEL
    KOCHEN, M
    DEUTSCH, KW
    OPERATIONS RESEARCH, 1972, 20 (02) : 276 - &
  • [29] A MATHEMATICAL-MODEL OF OSTEOARTHROSIS
    POLLATSCHEK, MA
    NAHIR, AM
    JOURNAL OF THEORETICAL BIOLOGY, 1990, 143 (04) : 497 - 505
  • [30] THE PARM MATHEMATICAL-MODEL
    EDMONSTON, JH
    PUGH, RE
    ECONOMETRICA, 1963, 31 (03) : 589 - 590