Sliding Mode Synchronization for a Class of Uncertain Fractional Order Chaotic Systems

被引:0
作者
Ma, Xiaoxia [1 ]
Hou, Bing [2 ]
Xu, Jin [1 ]
Liu, Heng [1 ]
机构
[1] Huainan Normal Univ, Dept Math & Computat Sci, Huainan 232038, Peoples R China
[2] North China Univ Water Resources & Elect Power, Dept Math & Informat Sci, Zhengzhou 450011, Henan, Peoples R China
来源
INTERNATIONAL JOURNAL OF APPLIED MATHEMATICS & STATISTICS | 2013年 / 42卷 / 12期
关键词
Fractional order chaotic system; Synchronization; Sliding mode control;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper investigates the synchronization problem for a class of uncertain fractional order chaotic systems by means of sliding mode control method. Regarding the synchronization assignment as a control problem, fractional order mathematics is employed to express the chaotic system and sliding mode surface. The stability analysis are carried out by means of Lyapunov based approach. Numerical simulations are given to show the effectiveness of the proposed method.
引用
收藏
页码:370 / 378
页数:9
相关论文
共 18 条
[1]   Weighted pseudo-almost periodic solutions of a class of semilinear fractional differential equations [J].
Agarwal, Ravi P. ;
de Andrade, Bruno ;
Cuevas, Claudio .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2010, 11 (05) :3532-3554
[2]   Robust synchronization of perturbed Chen's fractional-order chaotic systems [J].
Asheghan, Mohammad Mostafa ;
Beheshti, Mohammad Taghi Hamidi ;
Tavazoei, Mohammad Saleh .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (02) :1044-1051
[3]   Synchronization of different fractional order chaotic systems using active control [J].
Bhalekar, Sachin ;
Daftardar-Gejji, Varsha .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2010, 15 (11) :3536-3546
[4]   Chaos synchronization of the fractional Lu system [J].
Deng, WH ;
Li, CP .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 353 (1-4) :61-72
[5]   Synchronization of chaotic fractional Chen system [J].
Deng, WH ;
Li, CP .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2005, 74 (06) :1645-1648
[6]   Chaotic phenomena and fractional-order dynamics in the trajectory control of redundant manipulators [J].
Duarte, FBM ;
Machado, JAT .
NONLINEAR DYNAMICS, 2002, 29 (1-4) :315-342
[7]   Sliding mode synchronization of an uncertain fractional order chaotic system [J].
Hosseinnia, S. H. ;
Ghaderi, R. ;
Ranjbar, A. N. ;
Mahmoudian, M. ;
Momani, S. .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (05) :1637-1643
[8]   ANALOG SIMULATION OF NON-INTEGER ORDER TRANSFER FUNCTIONS FOR ANALYSIS OF ELECTRODE PROCESSES [J].
ICHISE, M ;
NAGAYANAGI, Y ;
KOJIMA, T .
JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 1971, 33 (02) :253-+
[9]   APPLICATIONS OF FRACTIONAL CALCULUS TO THE THEORY OF VISCOELASTICITY [J].
KOELLER, RC .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1984, 51 (02) :299-307
[10]  
Leibniz G.W., 1962, MATH SCHIFTEN