RELATIONSHIP BETWEEN PHOTOINHIBITION OF PHOTOSYNTHESIS, D1 PROTEIN-TURNOVER AND CHLOROPLAST STRUCTURE - EFFECTS OF PROTEIN-SYNTHESIS INHIBITORS

被引:118
|
作者
SCHNETTGER, B
CRITCHLEY, C
SANTORE, UJ
GRAF, M
KRAUSE, GH
机构
[1] UNIV DUSSELDORF, INST PLANT BIOCHEM, D-40225 DUSSELDORF, GERMANY
[2] UNIV QUEENSLAND, DEPT BOT, ST LUCIA, QLD 4072, AUSTRALIA
[3] UNIV DUSSELDORF, INST DEV & MOLEC BIOL PLANTS, D-40225 DUSSELDORF, GERMANY
来源
PLANT CELL AND ENVIRONMENT | 1994年 / 17卷 / 01期
关键词
SPINACIA OLERACEA; VALERIANELLA LOCUSTA; CHLORAMPHENICOL; CHLOROPHYLL FLUORESCENCE; CHLOROPLAST ULTRASTRUCTURE; D1; PROTEIN; PHOTOINIBITION; PHOTOSYSTEM II; STREPTOMYCIN;
D O I
10.1111/j.1365-3040.1994.tb00265.x
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Irradiation of Spinacia oleracea intact leaf tissue and of mesophyll protoplasts of Valerianella locusta at 20 degrees C with strong light resulted in severe (40-80%) inhibition of photosynthesis, measured as photosystem II electron transport activity in isolated thylakoids or as fluorescence parameter F-V/F-M on intact leaf disks. No net degradation of the D1 protein of photosystem II was seen under these conditions. However, in the presence of streptomycin, an inhibitor of chloroplast protein synthesis, net D1 degradation (up to about 80%) did occur with a half-time of 4-6 h, and photoinhibition was enhanced. Thylakoid ultrastructure remained stable during photoinhibition, even when substantial degradation of D1 took place in the presence of streptomycin. When leaf disks were irradiated at 2 degrees C, streptomycin did not influence the degree of photoinhibition, and net D1 degradation did not occur. These results suggest that in excess (photoinhibitory) light at 20 degrees C, turnover (coordinated degradation and synthesis) of D1 diminished the degree of photoinhibition. The observed photoinhibition is thought to be due to the accumulation of inactive photosystem II reaction centres still containing D1. In the presence of streptomycin, the D1 protein was degraded (probably in the previously inactivated centres), but restoration of active centres via D1 synthesis was blocked, leading to more severe photoinhibition. Low temperature (2 degrees C), by restricting both degradation and resynthesis of D1, favoured the accumulation of inactive centres. Streptomycin and chloramphenicol (another inhibitor of chloroplast protein synthesis) were tested for side-effects on photosynthesis. Strong inhibitory effects of chloramphenicol, but much less severe effects of streptomycin were observed.
引用
收藏
页码:55 / 64
页数:10
相关论文
共 50 条