FAST FOURIER-TRANSFORMS FOR NONEQUISPACED DATA

被引:618
作者
DUTT, A
ROKHLIN, V
机构
关键词
FAST FOURIER TRANSFORM; FOURIER ANALYSIS; TRIGONOMETRIC SERIES; INTERPOLATION; APPROXIMATION THEORY;
D O I
10.1137/0914081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A group of algorithms is presented generalizing the fast Fourier transform to the case of noninteger frequencies and nonequispaced nodes on the interval [-pi, pi]. The schemes of this paper are based on a combination of certain analytical considerations with the classical fast Fourier transform and generalize both the forward and backward FFTs. Each of the algorithms requires O(N . log N + N - log(1/epsilon)) arithmetic operations, where epsilon is the precision of computations and N is the number of nodes. The efficiency of the approach is illustrated by several numerical examples.
引用
收藏
页码:1368 / 1393
页数:26
相关论文
共 50 条
  • [41] Quantum multiresolution analysis via fast Fourier transforms on Heisenbrg finite group
    Rundblad, E
    Labunets, V
    Novak, P
    Multisensor, Multisource Information Fusion: Architectures, Algorithms and Applications 2005, 2005, 5813 : 301 - 311
  • [42] Fourier Analysis and the Fast Fourier Transform
    Salvat-Pujol, Francesc
    OPTICA PURA Y APLICADA, 2008, 41 (01): : 31 - 41
  • [43] Efficient Convolutional Neural Networks Utilizing Fine-Grained Fast Fourier Transforms
    Zhang, Yulin
    Li, Feipeng
    Xu, Haoke
    Li, Xiaoming
    Jiang, Shan
    ELECTRONICS, 2024, 13 (18)
  • [44] APPLICATION OF FAST FOURIER AND WAVELET TRANSFORMS TOWARDS ACTUATOR LEAKAGE DIAGNOSIS: A COMPARATIVE STUDY
    Goharrizi, Amin Yazdanpanah
    Sepehri, Nariman
    INTERNATIONAL JOURNAL OF FLUID POWER, 2013, 14 (02) : 39 - 51
  • [45] Fast algorithms for nonuniform Chirp-Fourier transform
    Sun, Yannan
    Qian, Wenchao
    AIMS MATHEMATICS, 2024, 9 (07): : 18968 - 18983
  • [46] DSL-Based Hardware Generation with Scala: Example Fast Fourier Transforms and Sorting Networks
    Serre, Francois
    Pueschel, Markus
    ACM TRANSACTIONS ON RECONFIGURABLE TECHNOLOGY AND SYSTEMS, 2020, 13 (01)
  • [47] Riesz means of Fourier transforms and Fourier series on Hardy spaces
    Weisz, F
    STUDIA MATHEMATICA, 1998, 131 (03) : 253 - 270
  • [48] Marcinkiewicz-φ-summability of Fourier transforms
    Weisz, F
    ACTA MATHEMATICA HUNGARICA, 2002, 96 (1-2) : 135 - 146
  • [49] Fourier Analysis of Periodic Radon Transforms
    Railo, Jesse
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (04)
  • [50] Fourier Analysis of Periodic Radon Transforms
    Jesse Railo
    Journal of Fourier Analysis and Applications, 2020, 26