FAST FOURIER-TRANSFORMS FOR NONEQUISPACED DATA

被引:644
作者
DUTT, A
ROKHLIN, V
机构
关键词
FAST FOURIER TRANSFORM; FOURIER ANALYSIS; TRIGONOMETRIC SERIES; INTERPOLATION; APPROXIMATION THEORY;
D O I
10.1137/0914081
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A group of algorithms is presented generalizing the fast Fourier transform to the case of noninteger frequencies and nonequispaced nodes on the interval [-pi, pi]. The schemes of this paper are based on a combination of certain analytical considerations with the classical fast Fourier transform and generalize both the forward and backward FFTs. Each of the algorithms requires O(N . log N + N - log(1/epsilon)) arithmetic operations, where epsilon is the precision of computations and N is the number of nodes. The efficiency of the approach is illustrated by several numerical examples.
引用
收藏
页码:1368 / 1393
页数:26
相关论文
共 14 条
[1]   WAVELET-LIKE BASES FOR THE FAST SOLUTION OF 2ND-KIND INTEGRAL-EQUATIONS [J].
ALPERT, B ;
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1993, 14 (01) :159-184
[2]  
[Anonymous], 1996, TABLES INTEGRALS SER
[3]   THE FRACTIONAL FOURIER-TRANSFORM AND APPLICATIONS [J].
BAILEY, DH ;
SWARZTRAUBER, PN .
SIAM REVIEW, 1991, 33 (03) :389-404
[4]   FAST WAVELET TRANSFORMS AND NUMERICAL ALGORITHMS .1. [J].
BEYLKIN, G ;
COIFMAN, R ;
ROKHLIN, V .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1991, 44 (02) :141-183
[5]   A FAST ADAPTIVE MULTIPOLE ALGORITHM FOR PARTICLE SIMULATIONS [J].
CARRIER, J ;
GREENGARD, L ;
ROKHLIN, V .
SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1988, 9 (04) :669-686
[6]   AN ALGORITHM FOR MACHINE CALCULATION OF COMPLEX FOURIER SERIES [J].
COOLEY, JW ;
TUKEY, JW .
MATHEMATICS OF COMPUTATION, 1965, 19 (90) :297-&
[7]  
Dahlquist G., 1974, NUMERICAL METHODS
[8]  
DUTT A, 1991, 841 YAL U YAL COMP S
[9]  
GOTTLIEB D, 1984, SPECTRAL METHODS PAR, P1
[10]  
Oran Brigham E., 1988, FAST FOURIER TRANSFO