ROBUST PRINCIPAL COMPONENT ANALYSIS BY PROJECTION PURSUIT

被引:37
|
作者
XIE, YL [1 ]
WANG, JH [1 ]
LIANG, YZ [1 ]
SUN, LX [1 ]
SONG, XH [1 ]
YU, RQ [1 ]
机构
[1] HUNAN UNIV, DEPT CHEM & CHEM ENGN, CHANGSHA 410082, PEOPLES R CHINA
关键词
PRINCIPAL COMPONENT ANALYSIS; PROJECTION PURSUIT; SIMULATED ANNEALING ALGORITHM; ROBUST STATISTICS;
D O I
10.1002/cem.1180070606
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Principal component analysis (PCA) is a widely used technique in chemometrics. The classical PCA method is, unfortunately, non-robust, since the variance is adopted as the objective function. In this paper, projection pursuit (PP) is used to carry out PCA with a criterion which is more robust than the variance. In addition, the generalized simulated annealing (GSA) algorithm is introduced as an optimization procedure in the process of PP calculation to guarantee the global optimum. The results for simulated data sets show that PCA via PP is resistant to the deviation of the error distribution from the normal one. The method is especially recommended for use in cases with possible outlier(s) existing in the data.
引用
收藏
页码:527 / 541
页数:15
相关论文
共 50 条
  • [31] Robust kernel principal component analysis and classification
    Debruyne, Michiel
    Verdonck, Tim
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2010, 4 (2-3) : 151 - 167
  • [32] A note on robust kernel principal component analysis
    Deng, Xinwei
    Yuan, Ming
    Sudjianto, Agus
    PREDICTION AND DISCOVERY, 2007, 443 : 21 - +
  • [33] Exactly Robust Kernel Principal Component Analysis
    Fan, Jicong
    Chow, Tommy W. S.
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2020, 31 (03) : 749 - 761
  • [34] Robust Principal Component Analysis based on Purity
    Pan, Jinyan
    Cai, Yingqi
    Xie, Youwei
    Lin, Tingting
    Gao, Yunlong
    Cao, Chao
    2022 34TH CHINESE CONTROL AND DECISION CONFERENCE, CCDC, 2022, : 2017 - 2023
  • [35] Generalized mean for robust principal component analysis
    Oh, Jiyong
    Kwak, Nojun
    PATTERN RECOGNITION, 2016, 54 : 116 - 127
  • [36] DISTRIBUTIONALLY ROBUST OPTIMIZATION WITH PRINCIPAL COMPONENT ANALYSIS
    Cheng, Jianqiang
    Chen, Richard Li-Yang
    Najm, Habib N.
    Pinar, Ali
    Safta, Cosmin
    Watson, Jean-Paul
    SIAM JOURNAL ON OPTIMIZATION, 2018, 28 (02) : 1817 - 1841
  • [37] Robust principal component analysis for functional data
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Graciela Boente
    Ricardo Fraiman
    Babette Brumback
    Christophe Croux
    Jianqing Fan
    Alois Kneip
    John I. Marden
    Daniel Peña
    Javier Prieto
    Jim O. Ramsay
    Mariano J. Valderrama
    Ana M. Aguilera
    N. Locantore
    J. S. Marron
    D. G. Simpson
    N. Tripoli
    J. T. Zhang
    K. L. Cohen
    Test, 1999, 8 (1) : 1 - 73
  • [38] Projection-pursuit approach to robust linear discriminant analysis
    Pires, Ana M.
    Branco, Joao A.
    JOURNAL OF MULTIVARIATE ANALYSIS, 2010, 101 (10) : 2464 - 2485
  • [39] Robust Hebbian learning and noisy principal component analysis
    Diamantaras, KI
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 1998, 67 (1-2) : 5 - 24
  • [40] Robust Principal Component Analysis of Data with Missing Values
    Karkkainen, Tommi
    Saarela, Mirka
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, MLDM 2015, 2015, 9166 : 140 - 154