ROBUST PRINCIPAL COMPONENT ANALYSIS BY PROJECTION PURSUIT

被引:37
|
作者
XIE, YL [1 ]
WANG, JH [1 ]
LIANG, YZ [1 ]
SUN, LX [1 ]
SONG, XH [1 ]
YU, RQ [1 ]
机构
[1] HUNAN UNIV, DEPT CHEM & CHEM ENGN, CHANGSHA 410082, PEOPLES R CHINA
关键词
PRINCIPAL COMPONENT ANALYSIS; PROJECTION PURSUIT; SIMULATED ANNEALING ALGORITHM; ROBUST STATISTICS;
D O I
10.1002/cem.1180070606
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Principal component analysis (PCA) is a widely used technique in chemometrics. The classical PCA method is, unfortunately, non-robust, since the variance is adopted as the objective function. In this paper, projection pursuit (PP) is used to carry out PCA with a criterion which is more robust than the variance. In addition, the generalized simulated annealing (GSA) algorithm is introduced as an optimization procedure in the process of PP calculation to guarantee the global optimum. The results for simulated data sets show that PCA via PP is resistant to the deviation of the error distribution from the normal one. The method is especially recommended for use in cases with possible outlier(s) existing in the data.
引用
收藏
页码:527 / 541
页数:15
相关论文
共 50 条
  • [21] Robust sparse principal component analysis
    Zhao Qian
    Meng DeYu
    Xu ZongBen
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (09) : 1 - 14
  • [22] Robust sparse principal component analysis
    Qian Zhao
    DeYu Meng
    ZongBen Xu
    Science China Information Sciences, 2014, 57 : 1 - 14
  • [23] Robust algorithms for principal component analysis
    Yang, TN
    Wang, SD
    PATTERN RECOGNITION LETTERS, 1999, 20 (09) : 927 - 933
  • [24] Stable Principal Component Pursuit via Convex Analysis
    Yin, Lei
    Parekh, Ankit
    Selesnick, Ivan
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (10) : 2595 - 2607
  • [25] Sequential projection pursuit principal component analysis - dealing with missing data associated with new-omics technologies
    Webb-Robertson, Bobbie-Jo M.
    Matzke, Melissa M.
    Metz, Thomas O.
    McDermott, Jason E.
    Walker, Hyunjoo
    Rodland, Karin D.
    Pounds, Joel G.
    Waters, Katrina M.
    BIOTECHNIQUES, 2013, 54 (03) : 165 - 168
  • [26] Constrained Projection Approximation Algorithms for Principal Component Analysis
    Seungjin Choi
    Jong-Hoon Ahn
    Andrzej Cichocki
    Neural Processing Letters, 2006, 24 : 53 - 65
  • [27] Robust principal component analysis and outlier detection with ecological data
    Jackson, DA
    Chen, Y
    ENVIRONMETRICS, 2004, 15 (02) : 129 - 139
  • [28] Constrained projection approximation algorithms for principal component analysis
    Choi, Seungjin
    Ahn, Jong-Hoon
    Cichocki, Andrzej
    NEURAL PROCESSING LETTERS, 2006, 24 (01) : 53 - 65
  • [29] Robust Principal Component Analysis: An IRLS Approach
    Polyak, Boris T.
    Khlebnikov, Mikhail V.
    IFAC PAPERSONLINE, 2017, 50 (01): : 2762 - 2767
  • [30] Robust kernel principal component analysis and classification
    Michiel Debruyne
    Tim Verdonck
    Advances in Data Analysis and Classification, 2010, 4 : 151 - 167