SUBDIFFUSIVE TRANSPORT IN STOCHASTIC WEBS

被引:9
作者
SCHWAGERL, M
KRUG, J
机构
[1] Theoretische Physik, Ludwig Maximilians Universität, W-8000 München 2
来源
PHYSICA D | 1991年 / 52卷 / 2-3期
关键词
D O I
10.1016/0167-2789(91)90117-R
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a one-parameter family of piecewise linear, continuous area preserving maps of the plane. At an infinite discrete set of parameter values the phase space is globally connected. The transport proceeds in stochastic webs which are structurally similar to those described recently by Zaslavsky and coworkers. However the transport is subdiffusive, i.e. the energy grows with time as t-alpha, where alpha < 1. This behavior is explained in terms of a Markov model derived from a detailed analysis of the phase space structure, and it is shown that alpha = 2/3 asymptotically. For a special case we identify sublattices in phase space which show nongeneric transport with alpha = 1.
引用
收藏
页码:143 / 156
页数:14
相关论文
共 29 条
[1]  
Arnol&PRIME
[2]  
d V. I., 1964, SOV MATH DOKL, V5, P581
[3]   REMARKS ON QUASICRYSTALLIC SYMMETRIES [J].
ARNOLD, VI .
PHYSICA D, 1988, 33 (1-3) :21-25
[4]   EXTENDED CHAOS AND DISAPPEARANCE OF KAM TRAJECTORIES [J].
BENSIMON, D ;
KADANOFF, LP .
PHYSICA D, 1984, 13 (1-2) :82-89
[5]   INVARIANT CIRCLES FOR THE PIECEWISE LINEAR STANDARD MAP [J].
BULLETT, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1986, 107 (02) :241-262
[6]   STOCHASTIC WEBS [J].
CHERNIKOV, AA ;
SAGDEEV, RZ ;
ZASLAVSKY, GM .
PHYSICA D, 1988, 33 (1-3) :65-76
[7]   MINIMAL CHAOS AND STOCHASTIC WEBS [J].
CHERNIKOV, AA ;
SAGDEEV, RZ ;
USIKOV, DA ;
ZAKHAROV, MY ;
ZASLAVSKY, GM .
NATURE, 1987, 326 (6113) :559-563
[8]   SYMMETRY AND CHAOS [J].
CHERNIKOV, AA ;
SAGDEEV, RZ ;
USIKOV, DA ;
ZASLAVSKY, GM .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1989, 17 (1-3) :17-32
[9]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[10]   CORRELATION-PROPERTIES OF DYNAMICAL CHAOS IN HAMILTONIAN-SYSTEMS [J].
CHIRIKOV, BV ;
SHEPELYANSKY, DL .
PHYSICA D, 1984, 13 (03) :395-400