FUS3 REPRESSES CLN1 AND CLN2 AND IN CONCERT WITH KSS1 PROMOTES SIGNAL TRANSDUCTION

被引:185
作者
ELION, EA
BRILL, JA
FINK, GR
机构
[1] MIT,WHITEHEAD INST BIOMED RES,CAMBRIDGE,MA 02142
[2] MIT,DEPT BIOL,CAMBRIDGE,MA 02142
关键词
CELL CYCLE CONTROL; CYCLIN; PROTEIN KINASE; MATING; YEAST;
D O I
10.1073/pnas.88.21.9392
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
FUS3 is functionally redundant with KSS1, a homologous yeast protein kinase, for a step(s) in signal transduction between the beta-subunit of the guanine nucleotide binding protein (G protein), STE4, and the mating type-specific transcriptional activator, STE12. Either FUS3 or KSS1 can execute this function; when neither gene encoding these protein kinases is present, signal transduction is blocked, causing sterility. This functional redundancy is strain dependent; some standard laboratory strains (S288C) are kss1-. FUS3 has additional functions required for cell cycle arrest and vegetative growth that do not overlap with KSS1 functions. FUS3 mediates cell cycle arrest during mating through transcriptional repression of two G1 cyclins (CLN1 and CLN2) and through posttranscriptional inhibition of a third G1 cyclin (CLN3). FUS3 is also required for vegetative growth in haploid strains dependent upon CLN3 for cell cycle progression but is not required in strains dependent upon either CLN1 or CLN2, suggesting a functional divergence among the three G1 cyclins. The diverse roles for FUS3 suggest that the FUS3 protein kinase has multiple substrates, some of which may be shared with KSS1.
引用
收藏
页码:9392 / 9396
页数:5
相关论文
共 41 条
[1]  
AHN NG, 1990, J BIOL CHEM, V265, P11487
[2]   AN INSULIN-STIMULATED PROTEIN-KINASE SIMILAR TO YEAST KINASES INVOLVED IN CELL-CYCLE CONTROL [J].
BOULTON, TG ;
YANCOPOULOS, GD ;
GREGORY, JS ;
SLAUGHTER, C ;
MOOMAW, C ;
HSU, J ;
COBB, MH .
SCIENCE, 1990, 249 (4964) :64-67
[3]  
BOULTON TG, 1991, CELL, V65, P677
[4]   IDENTIFICATION OF A GENE NECESSARY FOR CELL-CYCLE ARREST BY A NEGATIVE GROWTH-FACTOR OF YEAST - FAR1 IS AN INHIBITOR OF A G1 CYCLIN, CLN2 [J].
CHANG, F ;
HERSKOWITZ, I .
CELL, 1990, 63 (05) :999-1011
[5]   STOICHIOMETRY OF G-PROTEIN SUBUNITS AFFECTS THE SACCHAROMYCES-CEREVISIAE MATING PHEROMONE SIGNAL TRANSDUCTION PATHWAY [J].
COLE, GM ;
STONE, DE ;
REED, SI .
MOLECULAR AND CELLULAR BIOLOGY, 1990, 10 (02) :510-517
[6]   A PUTATIVE PROTEIN-KINASE OVERCOMES PHEROMONE-INDUCED ARREST OF CELL CYCLING IN S-CEREVISIAE [J].
COURCHESNE, WE ;
KUNISAWA, R ;
THORNER, J .
CELL, 1989, 58 (06) :1107-1119
[7]   A POTENTIAL POSITIVE FEEDBACK LOOP CONTROLLING CLN1 AND CLN2 GENE-EXPRESSION AT THE START OF THE YEAST-CELL CYCLE [J].
CROSS, FR ;
TINKELENBERG, AH .
CELL, 1991, 65 (05) :875-883
[9]  
CROSS FR, 1988, ANN REV CELL BIOL, V5, P341
[10]   POSITIVE FEEDBACK IN THE ACTIVATION OF G1 CYCLINS IN YEAST [J].
DIRICK, L ;
NASMYTH, K .
NATURE, 1991, 351 (6329) :754-757