EPSILON-DUALITY THEOREM OF NONDIFFERENTIABLE NONCONVEX MULTIOBJECTIVE PROGRAMMING

被引:68
作者
LIU, JC
机构
[1] Mathematics Section, Mingchi Institute of Technology, Taipei
关键词
MULTIOBJECTIVE PROGRAMMING; SCALAR PENALTY FUNCTIONS; EPSILON-VECTOR LAGRANGIAN;
D O I
10.1007/BF00940466
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
Necessary Kuhn-Tucker conditions up to precision epsilon without constraint qualification for epsilon-Pareto optimality of multiobjective programming are derived. This article suggests the establishment of a Wolfe-type epsilon-duality theorem for nondifferentiable, nonconvex, multi-objective minimization problems. The epsilon-vector Lagrangian and the generalized epsilon-saddle point for Pareto optimality are studied.
引用
收藏
页码:153 / 167
页数:15
相关论文
共 15 条
[1]  
CENSOR Y, 1979, APPLIED MATH OPTIMIZ, V4, P41
[2]   DUALITY IN VECTOR OPTIMIZATION [J].
JAHN, J .
MATHEMATICAL PROGRAMMING, 1983, 25 (03) :343-353
[3]   DUALITY THEOREMS AND AN OPTIMALITY CONDITION FOR NON-DIFFERENTIABLE CONVEX-PROGRAMMING [J].
KANNIAPPAN, P ;
SASTRY, SMA .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1982, 32 (JUN) :369-379
[4]   NECESSARY CONDITIONS FOR OPTIMALITY OF NONDIFFERENTIABLE CONVEX MULTIOBJECTIVE PROGRAMMING [J].
KANNIAPPAN, P .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1983, 40 (02) :167-174
[5]   DUALITY THEOREM OF NONDIFFERENTIABLE CONVEX MULTIOBJECTIVE PROGRAMMING [J].
LAI, HC ;
HO, CP .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1986, 50 (03) :407-420
[6]  
LAI HC, 1989, TAMKANG J MATH, V20, P7
[9]  
MINAMI M, 1981, B MATH STAT, V19, P19
[10]  
MOND B, 1979, UTILITAS MATHEMATICA, V15, P291