LOWER BOUND FOR THE 1ST EIGENVALUE OF THE LAPLACIAN ON A COMPACT MANIFOLD

被引:39
作者
LI, P
机构
关键词
D O I
10.1512/iumj.1979.28.28075
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:1013 / 1019
页数:7
相关论文
共 10 条
[1]  
AUBIN T, 1974, J MATH PURE APPL, V53, P347
[2]   RELATION BETWEEN LAPLACIAN AND DIAMETER FOR MANIFOLDS OF NON-NEGATIVE CURVATURE [J].
CHEEGER, J .
ARCHIV DER MATHEMATIK, 1968, 19 (05) :558-&
[3]  
Cheeger J., 1970, S S BOCHNER, P195
[4]   EIGENVALUE COMPARISON THEOREMS AND ITS GEOMETRIC APPLICATIONS [J].
CHEN, SY .
MATHEMATISCHE ZEITSCHRIFT, 1975, 143 (03) :289-297
[5]   DIFFERENTIAL EQUATIONS ON RIEMANNIAN MANIFOLDS AND THEIR GEOMETRIC APPLICATIONS [J].
CHENG, SY ;
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (03) :333-354
[6]  
Cheng SY., 1975, PROCSYMP PURE MATH, V27.2, P185, DOI [10.1090/pspum/027.2/0378003, DOI 10.1090/PSPUM/027.2/0378003]
[7]  
MAZET E, 1973, CR ACAD SCI A MATH, V277, P171
[8]   HARMONIC-FUNCTIONS ON COMPLETE RIEMANNIAN MANIFOLDS [J].
YAU, ST .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1975, 28 (02) :201-228
[9]  
YAU ST, 1975, ANN SCI ECOLE NORM S, V8, P487
[10]  
[No title captured]