IMAGE NOISE REMOVAL BASED ON TOTAL VARIATION

被引:16
作者
Thanh, D. N. H. [1 ]
Dvoenko, S. D. [1 ]
机构
[1] Tula State Univ, Tula, Russia
关键词
total variation; ROF model; Gaussian noise; Poisson noise; image processing; biomedical image; Euler-Lagrange equation;
D O I
10.18287/0134-2452-2015-39-4-564-571
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Today, raster images are created by different modern devices, such as digital cameras, X-Ray scanners, and so on. Image noise deteriorates the image quality, thus adversely affecting the result of processing. Biomedical images are an example of digital images. The noise in such raster images is assumed to be a mixture of Gaussian noise and Poisson noise. In this paper, we propose a method to remove these noises based on the total variation of the image brightness function. The proposed model is a combination of two famous denoising models, namely, the ROF model and a modified ROF model.
引用
收藏
页码:564 / 571
页数:8
相关论文
共 29 条
[1]  
Abe C., 2012, INT J COMPUTER ELECT, V4, P503, DOI [10.7763/ijcee.2012.v4.543, DOI 10.7763/IJCEE.2012.V4.543]
[2]  
Caselles V., 2011, HDB MATH METHODS IMA
[3]  
Caselles V., 2009, THEOR FDN NUMER METH, V9, P263
[4]  
Chan T. F., 2005, IMAGE PROCESSING ANA
[5]   Introduction to variational image-processing models and applications [J].
Chen, Ke .
INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2013, 90 (01) :1-8
[6]  
Getreuer P., 2012, IPOL
[7]  
Gill PE, 1974, NUMERICAL METHODS CO, P283
[8]   Fast noise variance estimation [J].
Immerkaer, J .
COMPUTER VISION AND IMAGE UNDERSTANDING, 1996, 64 (02) :300-302
[9]  
Jezierska A., 2011, EUSIPCO 19, P13
[10]  
Jezierska A, 2012, 2012 9TH IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), P1663, DOI 10.1109/ISBI.2012.6235897