STATISTICAL-MECHANICS OF UNSUPERVISED LEARNING

被引:28
作者
BIEHL, M
MIETZNER, A
机构
[1] Physikalisches Institut, Julius-Maximilians-Universität, Würzburg, D-9707h, Am Hubland
来源
EUROPHYSICS LETTERS | 1993年 / 24卷 / 05期
关键词
D O I
10.1209/0295-5075/24/5/017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study two different unsupervised learning strategies for a single-layer perceptron. The environment provides a set of unclassified training examples, which belong to two different classes, depending on their overlap with an N-dimensional concept vector. By means of a statistical-mechanics analysis, using the replica method, we investigate how well the perceptron infers the unknown structure from the input data.
引用
收藏
页码:421 / 426
页数:6
相关论文
共 20 条
[11]  
MIETZNER A, UNPUB
[12]  
Minsky M., 1969, PERCEPTRONS
[13]  
Minsky ML, 1988, PERCEPTRONS
[14]   A SIMPLIFIED NEURON MODEL AS A PRINCIPAL COMPONENT ANALYZER [J].
OJA, E .
JOURNAL OF MATHEMATICAL BIOLOGY, 1982, 15 (03) :267-273
[15]   ON THE ABILITY OF THE OPTIMAL PERCEPTRON TO GENERALIZE [J].
OPPER, M ;
KINZEL, W ;
KLEINZ, J ;
NEHL, R .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (11) :L581-L586
[16]  
Rosenblatt F, 1962, PRINCIPLES NEURODYNA
[17]  
RUJAN P, 1992, PREPRINT U OLDENBURG
[18]   FAST RECOGNITION OF REAL OBJECTS BY AN OPTIMIZED HETERO-ASSOCIATIVE NEURAL NETWORK [J].
SCHMITZ, HJ ;
POPPEL, G ;
WUNSCH, F ;
KREY, U .
JOURNAL DE PHYSIQUE, 1990, 51 (02) :167-183
[19]   STATISTICAL-MECHANICS OF LEARNING FROM EXAMPLES [J].
SEUNG, HS ;
SOMPOLINSKY, H ;
TISHBY, N .
PHYSICAL REVIEW A, 1992, 45 (08) :6056-6091
[20]   THE STATISTICAL-MECHANICS OF LEARNING A RULE [J].
WATKIN, TLH ;
RAU, A ;
BIEHL, M .
REVIEWS OF MODERN PHYSICS, 1993, 65 (02) :499-556