AREA PRESERVING MAPPINGS THAT ARE NOT REVERSIBLE

被引:14
作者
ROBERTS, JAG
CAPEL, HW
机构
[1] Institute for Theoretical Physics, University of Amsterdam, 1018 XE Amsterdam
关键词
D O I
10.1016/0375-9601(92)90441-N
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Reversible mappings are those possessing a (discrete) time reversal symmetry. We present a class of area preserving mappings that are not reversible, which is equivalent to showing that these mappings cannot be written as the composition of two involutions. These mappings possess a fixed point about which the Taylor expansion is a perturbation of the identity mapping.
引用
收藏
页码:243 / 248
页数:6
相关论文
共 30 条
[11]   UNIVERSAL BEHAVIOR IN FAMILIES OF AREA-PRESERVING MAPS [J].
GREENE, JM ;
MACKAY, RS ;
VIVALDI, F ;
FEIGENBAUM, MJ .
PHYSICA D-NONLINEAR PHENOMENA, 1981, 3 (03) :468-486
[12]   METHOD FOR DETERMINING A STOCHASTIC TRANSITION [J].
GREENE, JM .
JOURNAL OF MATHEMATICAL PHYSICS, 1979, 20 (06) :1183-1201
[13]  
MacKay R. S., 1983, LONG TIME PREDICTION, P127
[14]  
MacKay R S, 1987, HAMILTONIAN DYNAMICA, P137
[16]  
MOSER JK, 1968, MEM AM MATH SOC, P1
[17]   BIFURCATIONS IN 2-DIMENSIONAL REVERSIBLE MAPS [J].
POST, T ;
CAPEL, HW ;
QUISPEL, GRW ;
VANDERWEELE, JP .
PHYSICA A, 1990, 164 (03) :625-662
[18]   CONSERVATIVE AND DISSIPATIVE BEHAVIOR IN REVERSIBLE DYNAMICAL-SYSTEMS [J].
QUISPEL, GRW ;
ROBERTS, JAG .
PHYSICS LETTERS A, 1989, 135 (6-7) :337-342
[19]   REVERSIBLE MAPPINGS OF THE PLANE [J].
QUISPEL, GRW ;
ROBERTS, JAG .
PHYSICS LETTERS A, 1988, 132 (04) :161-163
[20]   LOCAL REVERSIBILITY IN DYNAMICAL-SYSTEMS [J].
QUISPEL, GRW ;
CAPEL, HW .
PHYSICS LETTERS A, 1989, 142 (2-3) :112-116