AREA PRESERVING MAPPINGS THAT ARE NOT REVERSIBLE

被引:14
作者
ROBERTS, JAG
CAPEL, HW
机构
[1] Institute for Theoretical Physics, University of Amsterdam, 1018 XE Amsterdam
关键词
D O I
10.1016/0375-9601(92)90441-N
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Reversible mappings are those possessing a (discrete) time reversal symmetry. We present a class of area preserving mappings that are not reversible, which is equivalent to showing that these mappings cannot be written as the composition of two involutions. These mappings possess a fixed point about which the Taylor expansion is a perturbation of the identity mapping.
引用
收藏
页码:243 / 248
页数:6
相关论文
共 30 条
[1]  
Arnold V.I, 1984, NONLINEAR TURBULENT, V3, P1161
[2]   UNIVERSAL PROPERTIES IN CONSERVATIVE DYNAMICAL-SYSTEMS [J].
BENETTIN, G ;
CERCIGNANI, C ;
GALGANI, L ;
GIORGILLI, A .
LETTERE AL NUOVO CIMENTO, 1980, 28 (01) :1-4
[3]   FURTHER RESULTS ON UNIVERSAL PROPERTIES IN CONSERVATIVE DYNAMICAL-SYSTEMS [J].
BENETTIN, G ;
GALGANI, L ;
GIORGILLI, A .
LETTERE AL NUOVO CIMENTO, 1980, 29 (06) :163-166
[4]   PERIOD DOUBLING BIFURCATIONS AND UNIVERSALITY IN CONSERVATIVE-SYSTEMS [J].
BOUNTIS, TC .
PHYSICA D, 1981, 3 (03) :577-589
[5]   CONDITIONS FOR LOCAL REVERSIBILITY [J].
BROWN, A .
PHYSICA A, 1991, 173 (1-2) :267-280
[6]   UNIVERSAL INSTABILITY OF MANY-DIMENSIONAL OSCILLATOR SYSTEMS [J].
CHIRIKOV, BV .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1979, 52 (05) :263-379
[7]   ON UNIVERSALITY FOR AREA-PRESERVING MAPS OF THE PLANE [J].
COLLET, P ;
ECKMANN, JP ;
KOCH, H .
PHYSICA D, 1981, 3 (03) :457-467
[8]   REVERSIBLE DIFFEOMORPHISMS AND FLOWS [J].
DEVANEY, RL .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 218 (APR) :89-113
[9]  
ECKMANN JP, 1984, MEM AM MATH SOC, V47, P1
[10]  
FINN JM, 1974, THESIS U MARYLAND