Influence of laser power on tensile properties and material characteristics of laser-sintered UHMWPE

被引:27
作者
Khalil, Yas [1 ]
Kowalski, Adam [2 ]
Hopkinson, Neil [1 ,3 ]
机构
[1] Univ Sheffield, Dept Mech Engn, Sheffield S1 3JD, S Yorkshire, England
[2] Unilever, R&D Port Sunlight Lab, Wirral CH63 3JW, Merseyside, England
[3] XAAR Plc, Cambridge Sci Pk, Cambridge CB4 0XR, England
基金
英国工程与自然科学研究理事会;
关键词
Additive manufacturing; UHMWPE; Laser sintering; Laser power; Tensile properties;
D O I
10.1051/mfreview/2016015
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Ultra High Molecular Weight Polyethylene (UHMWPE) has excellent properties, such as high mechanical performance, low friction, high wear and chemical resistance but so far there has been limited use in additive manufacturing (AM). Laser sintering of polymers is one of the most promising AM technologies due to its ability to produce complex geometries with accurate dimensions and good mechanical properties. Consequently, this study investigates the influence of laser power on physical and mechanical properties of UHMWPE parts produced by laser sintering. In particular mechanical properties, such as Ultimate Tensile Strength (UTS), Young's Modulus and elongation at break were evaluated alongside relative density, dilation and shrinkage. Finally, the fracture surface of the tensile test specimens was examined by electron microscopy. Results show that within a laser power range of 6-12 W there appears to be an optimum where tensile strength and relative density reach a maximum, dilation is minimised and where elongation increases with laser power. UTS up to 2.42 MPa, modulus up to 72.6 MPa and elongation at break up to 51.4% were observed. Relative density and part dimensions are also influenced by laser power.
引用
收藏
页数:9
相关论文
共 23 条
[1]   Performance limitations in polymer laser sintering [J].
Bourell, David L. ;
Watt, Trevor J. ;
Leigh, David K. ;
Fulcher, Ben .
8TH INTERNATIONAL CONFERENCE ON LASER ASSISTED NET SHAPE ENGINEERING (LANE 2014), 2014, 56 :147-156
[2]   Dependence of mechanical properties of polyamide components on build parameters in the SLS process [J].
Caulfield, B. ;
McHugh, P. E. ;
Lohfeld, S. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2007, 182 (1-3) :477-488
[3]   Development of a characterization approach for the sintering behavior of new thermoplastics for selective laser sintering [J].
Drummer, Dietmar ;
Rietzel, Dominik ;
Kuehnlein, Florian .
LASER ASSISTED NET SHAPE ENGINEERING 6, PROCEEDINGS OF THE LANE 2010, PART 2, 2010, 5 :533-542
[4]   Experimental investigation into the selective laser sintering of silicon carbide polyamide composites [J].
Gill, TJ ;
Hon, KKB .
PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART B-JOURNAL OF ENGINEERING MANUFACTURE, 2004, 218 (10) :1249-1256
[5]   Laser sintering of polyamides and other polymers [J].
Goodridge, R. D. ;
Tuck, C. J. ;
Hague, R. J. M. .
PROGRESS IN MATERIALS SCIENCE, 2012, 57 (02) :229-267
[6]   An empirical study into laser sintering of ultra-high molecular weight polyethylene (UHMWPE) [J].
Goodridge, Ruth D. ;
Hague, Richard J. M. ;
Tuck, Christopher J. .
JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2010, 210 (01) :72-80
[7]   Process repeatability and sources of error in indirect SLS of aluminium [J].
Hopkinson, Neil ;
Sercombe, T. B. .
RAPID PROTOTYPING JOURNAL, 2008, 14 (02) :108-113
[8]   Microstructural origin of physical and mechanical properties of ultra high molecular weight polyethylene processed by high velocity compaction [J].
Jauffres, D. ;
Lame, O. ;
Vigier, G. ;
Dore, F. .
POLYMER, 2007, 48 (21) :6374-6383
[9]  
KRUTH JP, 2008, P INT C PMI GHENT BE, P00001
[10]  
Kurtz SM, 2009, UHMWPE BIOMATERIALS HANDBOOK: ULTRA-HIGH MOLECULAR WEIGHT POLYETHYLENE IN TOTAL JOINT REPLACEMENT AND MEDICAL DEVICES, 2ND EDITION, P1