Linear state feedback stabilisation on time scales

被引:11
作者
Jackson, Billy J. [1 ]
Davis, John M. [2 ]
Gravagne, Ian A. [3 ]
Marks, Robert J., II [3 ]
机构
[1] St Xavier Univ, Dept Math, Chicago, IL 60655 USA
[2] Baylor Univ, Dept Math, Waco, TX 76798 USA
[3] Baylor Univ, Dept Elect & Comp Engn, Waco, TX 76798 USA
关键词
time scale; feedback control; Gramian; exponential stability; systems theory;
D O I
10.1504/IJDSDE.2011.038500
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
For a general class of dynamical systems (of which the canonical continuous and uniform discrete versions are but special cases), we prove that there is a state feedback gain such that the resulting closed-loop system is uniformly exponentially stable with a prescribed rate. The methods here generalise and extend Gramian-based linear state feedback control to much more general time domains, e.g., nonuniform discrete or a combination of continuous and discrete time. In conclusion, we discuss an experimental implementation of this theory.
引用
收藏
页码:163 / 177
页数:15
相关论文
共 38 条
[1]   Dynamic equations on time scales: a survey [J].
Agarwal, R ;
Bohner, M ;
O'Regan, D ;
Peterson, A .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2002, 141 (1-2) :1-26
[2]  
[Anonymous], 1996, LINEAR SYSTEM THEORY
[3]  
Antsaklis P.J., 2005, LINEAR SYSTEMS
[4]   A production-inventory model of HMMS on time scales [J].
Atici, Ferhan M. ;
Uysal, Fahriye .
APPLIED MATHEMATICS LETTERS, 2008, 21 (03) :236-243
[5]   An application of time scales to economics [J].
Atici, FM ;
Biles, DC ;
Lebedinsky, A .
MATHEMATICAL AND COMPUTER MODELLING, 2006, 43 (7-8) :718-726
[6]  
BHAMIDI S, 2008, IMS COLLECTIONS PROB, V2, P42
[7]  
Bohner M., 2001, DYNAMIC EQUATIONS TI, DOI 10.1007/978-1-4612-0201-1
[8]  
Bohner M., 2003, ADV DYNAMIC EQUATION
[9]  
Bowman D, 2002, MEM AM MATH SOC, V159, P1
[10]  
CALLIER F. M., 1991, LINEAR SYSTEM THEORY