Bootstrapping Composite Quantile Regression

被引:0
|
作者
Seo, Kangmin [1 ]
Bang, Sungwan [2 ]
Jhun, Myoungshic [1 ]
机构
[1] Korea Univ, Dept Stat, Seoul 136701, South Korea
[2] Korea Mil Acad, Dept Math, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Quantile regression; composite quantile regression; bootstrap;
D O I
10.5351/KJAS.2012.25.2.341
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Composite quantile regression model is considered for iid error case. Since the regression coefficients are the same across different quantiles, composite quantile regression can be used to combine the strength across multiple quantile regression models. For the composite quantile regression, bootstrap method is examined for statistical inference including the selection of the number of quantiles and confidence intervals for the regression coefficients. Feasibility of the bootstrap method is demonstrated through a simulation study.
引用
收藏
页码:341 / 350
页数:10
相关论文
共 50 条
  • [41] Transfer learning with high dimensional composite quantile regression
    Li, Jie
    Song, Yunquan
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2024, 94 (10) : 2273 - 2290
  • [42] Functional single-index composite quantile regression
    Jiang, Zhiqiang
    Huang, Zhensheng
    Zhang, Jing
    METRIKA, 2023, 86 (05) : 595 - 603
  • [43] Optimal subsampling for composite quantile regression in big data
    Yuan, Xiaohui
    Li, Yong
    Dong, Xiaogang
    Liu, Tianqing
    STATISTICAL PAPERS, 2022, 63 (05) : 1649 - 1676
  • [44] Test for single-index composite quantile regression
    Jiang, Rong
    Qian, Wei-Min
    Zhou, Zhan-Gong
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2014, 43 (05): : 861 - 871
  • [45] Composite quantile regression for varying-coefficient single-index models
    Fan, Yan
    Tang, Manlai
    Tian, Maozai
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2016, 45 (10) : 3027 - 3047
  • [46] Penalized composite quantile estimation for censored regression model with a diverging number of parameters
    Liu, Huilan
    Yang, Hu
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (13) : 6558 - 6578
  • [47] An adapted loss function for composite quantile regression with censored data
    Xiaohui Yuan
    Xinran Zhang
    Wei Guo
    Qian Hu
    Computational Statistics, 2024, 39 : 1371 - 1401
  • [48] Estimation of linear composite quantile regression using EM algorithm
    Tian, Yuzhu
    Zhu, Qianqian
    Tian, Maozai
    STATISTICS & PROBABILITY LETTERS, 2016, 117 : 183 - 191
  • [49] Weighted composite quantile regression with censoring indicators missing at random
    Wang, Jiang-Feng
    Jiang, Wei-Jun
    Xu, Fang-Yin
    Fu, Wu-Xin
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2021, 50 (12) : 2900 - 2917
  • [50] Prediction of composite indicators using locally weighted quantile regression
    Ruksenaite, Jurga
    Vaitkus, Pranas
    Asijavicius, Povilas
    NONLINEAR ANALYSIS-MODELLING AND CONTROL, 2018, 23 (01): : 19 - 30