Bootstrapping Composite Quantile Regression

被引:0
|
作者
Seo, Kangmin [1 ]
Bang, Sungwan [2 ]
Jhun, Myoungshic [1 ]
机构
[1] Korea Univ, Dept Stat, Seoul 136701, South Korea
[2] Korea Mil Acad, Dept Math, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Quantile regression; composite quantile regression; bootstrap;
D O I
10.5351/KJAS.2012.25.2.341
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Composite quantile regression model is considered for iid error case. Since the regression coefficients are the same across different quantiles, composite quantile regression can be used to combine the strength across multiple quantile regression models. For the composite quantile regression, bootstrap method is examined for statistical inference including the selection of the number of quantiles and confidence intervals for the regression coefficients. Feasibility of the bootstrap method is demonstrated through a simulation study.
引用
收藏
页码:341 / 350
页数:10
相关论文
共 50 条
  • [31] Bayesian regularized regression based on composite quantile method
    Wei-hua Zhao
    Ri-quan Zhang
    Ya-zhao Lü
    Ji-cai Liu
    Acta Mathematicae Applicatae Sinica, English Series, 2016, 32 : 495 - 512
  • [32] Functional single-index composite quantile regression
    Zhiqiang Jiang
    Zhensheng Huang
    Jing Zhang
    Metrika, 2023, 86 : 595 - 603
  • [33] Bayesian Regularized Regression Based on Composite Quantile Method
    Zhao, Wei-hua
    Zhang, Ri-quan
    Lu, Ya-zhao
    Liu, Ji-cai
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2016, 32 (02): : 495 - 512
  • [34] Bayesian bridge and reciprocal bridge composite quantile regression
    Alsaadi, Zainab
    Alhamzawi, Rahim
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024, 53 (08) : 3571 - 3588
  • [35] Truncated composite quantile regression with covariates measurement errors
    Xu, Hongxia
    Qin, Mengting
    Fan, Guoliang
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2024,
  • [36] Composite versus model-averaged quantile regression
    Bloznelis, Daumantas
    Claeskens, Gerda
    Zhou, Jing
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2019, 200 : 32 - 46
  • [37] DISTRIBUTED SPARSE COMPOSITE QUANTILE REGRESSION IN ULTRAHIGH DIMENSIONS
    Chen, Canyi
    Gu, Yuwen
    Zou, Hui
    Zhu, Liping
    STATISTICA SINICA, 2023, 33 : 1143 - 1167
  • [38] Adaptive lasso penalised censored composite quantile regression
    Bang, Sungwan
    Cho, Hyungjun
    Jhun, Myoungshic
    INTERNATIONAL JOURNAL OF DATA MINING AND BIOINFORMATICS, 2016, 15 (01) : 22 - 46
  • [39] Optimal subsampling for composite quantile regression in big data
    Xiaohui Yuan
    Yong Li
    Xiaogang Dong
    Tianqing Liu
    Statistical Papers, 2022, 63 : 1649 - 1676
  • [40] Composite quantile regression for the receiver operating characteristic curve
    Duan, Xiaogang
    Zhou, Xiao-Hua
    BIOMETRIKA, 2013, 100 (04) : 889 - 900