A NEW VARIATIONAL RESULT FOR QUASI-NEWTON FORMULAE

被引:37
|
作者
Fletcher, R. [1 ]
机构
[1] Univ Dundee, Dept Math Sci, Dundee DD1 4HN, Scotland
关键词
quasi-Newton method; BFGS formula; DFP formula;
D O I
10.1137/0801002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The recent measure function of Byrd and Nocedal [SIAM J. Numer. Anal., 26 (1989), pp. 727-739] is considered and simple proofs of some of its properties are given. It is then shown that the BFGS and DFP formulae satisfy a least change property with respect to this new measure.
引用
收藏
页码:18 / 21
页数:4
相关论文
共 50 条
  • [11] A QUASI-NEWTON TRUST REGION METHOD BASED ON A NEW FRACTIONAL MODEL
    Zhu, Honglan
    Ni, Qin
    Zeng, Meilan
    NUMERICAL ALGEBRA CONTROL AND OPTIMIZATION, 2015, 5 (03): : 237 - 249
  • [12] Smoothing Newton and Quasi-Newton Methods for Mixed Complementarity Problems
    Donghui Li
    Masao Fukushima
    Computational Optimization and Applications, 2000, 17 : 203 - 230
  • [13] Smoothing Newton and quasi-Newton methods for mixed complementarity problems
    Li, DH
    Fukushima, M
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2000, 17 (2-3) : 203 - 230
  • [14] ON THE BEHAVIOR OF BROYDENS CLASS OF QUASI-NEWTON METHODS
    Byrd, Richard H.
    Liu, Dong C.
    Nocedal, Jorge
    SIAM JOURNAL ON OPTIMIZATION, 1992, 2 (04) : 533 - 557
  • [15] A PROJECTIVE QUASI-NEWTON METHOD FOR NONLINEAR OPTIMIZATION
    ZHANG, JZ
    ZHU, DT
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1994, 53 (03) : 291 - 307
  • [16] Quasi-Newton approach to nonnegative image restorations
    Hanke, M
    Nagy, JG
    Vogel, C
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2000, 316 (1-3) : 223 - 236
  • [17] Adjusting the BFGS update for quasi-Newton methods
    Hassan, Basim Abbas
    Mohammed, Ahmed W.
    JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2025, 28 (01) : 31 - 41
  • [18] THE LEAST PRIOR DEVIATION QUASI-NEWTON UPDATE
    MIFFLIN, RB
    NAZARETH, JL
    MATHEMATICAL PROGRAMMING, 1994, 65 (03) : 247 - 261
  • [19] Asynchronous parallel stochastic Quasi-Newton methods
    Tong, Qianqian
    Liang, Guannan
    Cai, Xingyu
    Zhu, Chunjiang
    Bi, Jinbo
    PARALLEL COMPUTING, 2021, 101
  • [20] Phase equilibrium calculations with quasi-Newton methods
    Nichita, Dan Vladimir
    Petitfrere, Martin
    FLUID PHASE EQUILIBRIA, 2015, 406 : 194 - 208