NECESSARY CONDITIONS FOR OPTIMAL-CONTROL OF STOCHASTIC-SYSTEMS WITH RANDOM JUMPS

被引:331
作者
TANG, SJ
LI, XJ
机构
[1] Fudan Univ, Shanghai
关键词
MAXIMUM PRINCIPLE; OPTIMAL STOCHASTIC CONTROL; POISSON POINT PROCESS; LEBESGUE INTEGRAL;
D O I
10.1137/S0363012992233858
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A maximum principle is proved for optimal controls of stochastic systems with random jumps. The control is allowed to enter into both diffusion and jump terms. The form of the maximum principle turns out to be quite different from the one corresponding to the pure diffusion system (the word ''pure'' here means the absence of the jump term). In calculating the first-order coefficient for the cost variation, only a property for Lebesgue integrals of scalar-valued functions in the real number space R is used. This shows that there is no essential difference between deterministic and stochastic systems as far as the derivation of maximum principles is concerned.
引用
收藏
页码:1447 / 1475
页数:29
相关论文
共 24 条
[1]   THE PARTIALLY OBSERVED STOCHASTIC MINIMUM PRINCIPLE [J].
BARAS, JS ;
ELLIOTT, RJ ;
KOHLMANN, M .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (06) :1279-1292
[2]  
Bensoussan A., 1988, PERTURBATION METHODS
[3]  
BENSOUSSAN A, 1981, LECTURE NOTES MATH, V972
[4]   INTRODUCTORY APPROACH TO DUALITY IN OPTIMAL STOCHASTIC CONTROL [J].
BISMUT, JM .
SIAM REVIEW, 1978, 20 (01) :62-78
[5]   OPTIMAL-CONTROL OF JUMP PROCESSES [J].
BOEL, R ;
VARAIYA, P .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1977, 15 (01) :92-119
[6]  
BOEL RK, 1974, M448 U CAL EL RES LA
[7]   OPTIMAL-CONTROL OF A JUMP PROCESS [J].
DAVIS, M ;
ELLIOTT, R .
ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1977, 40 (03) :183-202
[8]  
EKELAND I, 1972, CR ACAD SCI A MATH, V275, P1057
[9]   NON-CONVEX MINIMIZATION PROBLEMS [J].
EKELAND, I .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1979, 1 (03) :443-474
[10]   OPTIMAL-CONTROL OF A STOCHASTIC-SYSTEM [J].
ELLIOTT, RJ .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1977, 15 (05) :756-778