ON THE INVERSE PROBLEM OF THE CALCULUS OF VARIATIONS FOR A CLASS OF COUPLED DYNAMIC-SYSTEMS

被引:15
作者
IBORT, LA
MARIN SOLANO, J
机构
[1] Dept. de Fisica Teorica, Univ. Complutense de Madrid
关键词
D O I
10.1088/0266-5611/7/5/005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The inverse problem of the calculus of variations for a class of coupled dynamical systems-the so-called driven second-order differential equations-are analysed. A family of necessary and sufficient conditions are found that assure the existence of a local Lagrangian function for a given driven second-order differential equations. These conditions are stated geometrically and some of their consequences and examples are discussed.
引用
收藏
页码:713 / 725
页数:13
相关论文
共 11 条
[1]  
BALACHANDRAN AP, 1983, LECTURE NOTES PHYSIC, V188
[2]  
Cantrijn F., 1986, Journal of Geometry and Physics, V3, P353, DOI 10.1016/0393-0440(86)90014-8
[3]   THEORY OF SINGULAR LAGRANGIANS [J].
CARINENA, JF .
FORTSCHRITTE DER PHYSIK-PROGRESS OF PHYSICS, 1990, 38 (09) :641-679
[4]   A GEOMETRICAL VERSION OF THE HELMHOLTZ CONDITIONS IN TIME-DEPENDENT LAGRANGIAN DYNAMICS [J].
CRAMPIN, M ;
PRINCE, GE ;
THOMPSON, G .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1984, 17 (07) :1437-1447
[5]   ON THE DIFFERENTIAL GEOMETRY OF THE EULER-LAGRANGE EQUATIONS, AND THE INVERSE PROBLEM OF LAGRANGIAN DYNAMICS [J].
CRAMPIN, M .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1981, 14 (10) :2567-2575
[6]   Solution of the inverse problem of the calculus of variations [J].
Douglas, Jesse .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1941, 50 (1-3) :71-128
[7]   EQUATIONS OF MOTION, COMMUTATION RELATIONS AND AMBIGUITIES IN THE LAGRANGIAN-FORMALISM [J].
HENNEAUX, M .
ANNALS OF PHYSICS, 1982, 140 (01) :45-64
[8]   ON THE EXISTENCE OF LOCAL AND GLOBAL LAGRANGIANS FOR ORDINARY DIFFERENTIAL-EQUATIONS [J].
IBORT, LA ;
LOPEZLACASTA, C .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1990, 23 (21) :4779-4792
[10]  
MORANDI G, 1990, PHYS REP, V188, P1