A 2-STEP METHOD WITH PHASE-LAG OF ORDER INFINITY FOR THE NUMERICAL-INTEGRATION OF 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEM

被引:52
作者
SIMOS, TE
机构
[1] Department of Mathematics, National Technical University of Athens, Zografou Campus, Zografou
关键词
2ND ORDER PERIODIC INITIAL-VALUE PROBLEM; PHASE-LAG;
D O I
10.1080/00207169108803985
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A two-step method with phase-lag of order infinity is developed for the numerical integration of second order periodic initial-value problem. The method has algebraic order six. Extensive numerical testing indicates that the new method is generally more accurate than other two-step methods. © 1991, Taylor & Francis Group, LLC. All rights reserved.
引用
收藏
页码:135 / 140
页数:6
相关论文
共 12 条
[1]   A ONE-STEP METHOD FOR DIRECT INTEGRATION OF STRUCTURAL DYNAMIC EQUATIONS [J].
BRUSA, L ;
NIGRO, L .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1980, 15 (05) :685-699
[2]  
BUCKINGHAM RA, 1962, NUMERICAL SOLUTION O
[3]  
Chawla M. M., 1977, BIT (Nordisk Tidskrift for Informationsbehandling), V17, P128, DOI 10.1007/BF01932284
[4]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND-ORDER PERIODIC INITIAL-VALUE PROBLEMS .2. EXPLICIT METHOD [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 15 (03) :329-337
[5]   2-STEP 4TH-ORDER P-STABLE METHODS WITH PHASE-LAG OF ORDER 6 FOR Y''=F(T,Y) [J].
CHAWLA, MM ;
RAO, PS ;
NETA, B .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1986, 16 (02) :233-236
[6]   A NOUMEROV-TYPE METHOD WITH MINIMAL PHASE-LAG FOR THE INTEGRATION OF 2ND ORDER PERIODIC INITIAL-VALUE PROBLEMS [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1984, 11 (03) :277-281
[7]   AN EXPLICIT 6TH-ORDER METHOD WITH PHASE-LAG OF ORDER 8 FOR Y''=F(T, Y) [J].
CHAWLA, MM ;
RAO, PS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1987, 17 (03) :365-368
[9]  
Cooley J. W., 1961, MATH COMPUT, V15, P363, DOI [10.2307/2003025, DOI 10.2307/2003025]
[10]   PHASE PROPERTIES OF HIGH-ORDER, ALMOST P-STABLE FORMULAS [J].
THOMAS, RM .
BIT, 1984, 24 (02) :225-238