ELECTRONIC-PROPERTIES OF A CLASS OF ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS

被引:7
|
作者
YOU, JQ [1 ]
YAN, JR [1 ]
YANG, QB [1 ]
机构
[1] ACAD SINICA, INST MET RES, ATOM IMAGING SOLIDS LAB, SHENYANG 110015, PEOPLES R CHINA
来源
关键词
D O I
10.1007/BF01390657
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Electronic properties of a class of one-dimensional quasiperiodic systems are studied by the extended Kohmoto-Kadanoff-Tang (KKT) renormalization-group method. The employed models are tight-binding diagonal and off-diagonal models. It is showed that the energy spectra of the quasiperiodic systems are Cantor-like, namely the spectra are self-similar and the energy gaps are every-where dense on the real E-line. © 1990 Springer-Verlag.
引用
收藏
页码:119 / 123
页数:5
相关论文
共 50 条
  • [1] LOCAL ELECTRONIC-PROPERTIES OF ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    ZHONG, JX
    YOU, JQ
    YAN, JR
    YAN, XH
    PHYSICAL REVIEW B, 1991, 43 (16): : 13778 - 13781
  • [2] THE EFFECT OF AN INTERELECTRON INTERACTION ON ELECTRONIC-PROPERTIES IN ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    HIRAMOTO, H
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1990, 59 (03) : 811 - 814
  • [3] PHONON PROPERTIES OF A CLASS OF ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    YOU, JQ
    YANG, QB
    YAN, JR
    PHYSICAL REVIEW B, 1990, 41 (11): : 7491 - 7496
  • [4] ELECTRONIC-PROPERTIES FOR A CLASS OF ONE-DIMENSIONAL QUASI-LATTICES
    HUANG, XQ
    MO, D
    LIU, YY
    ACTA PHYSICA SINICA-OVERSEAS EDITION, 1994, 3 (01): : 56 - 63
  • [5] ELECTRONIC-PROPERTIES OF ONE-DIMENSIONAL QUASI-PERIODIC LATTICES - GREENS-FUNCTION RENORMALIZATION-GROUP APPROACH
    ZHONG, JX
    YAN, JR
    YOU, JQ
    YAN, XH
    MEI, YP
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 91 (01): : 127 - 133
  • [6] Localization in One-dimensional Quasi-periodic Nonlinear Systems
    Jiansheng Geng
    Jiangong You
    Zhiyan Zhao
    Geometric and Functional Analysis, 2014, 24 : 116 - 158
  • [7] Localization in One-dimensional Quasi-periodic Nonlinear Systems
    Geng, Jiansheng
    You, Jiangong
    Zhao, Zhiyan
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 2014, 24 (01) : 116 - 158
  • [8] ALGEBRAIC STRUCTURES FOR ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    KRAMER, P
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (02): : 213 - 228
  • [9] POLARON FORMATION IN ONE-DIMENSIONAL QUASI-PERIODIC SYSTEMS
    PNEVMATIKOS, S
    YANOVITSKII, O
    FRAGGIS, T
    ECONOMOU, EN
    PHYSICAL REVIEW LETTERS, 1992, 68 (15) : 2370 - 2371
  • [10] ELECTRONIC-PROPERTIES OF ONE-DIMENSIONAL QUASI-LATTICES
    HUANG, XQ
    LIU, YY
    MO, D
    ZEITSCHRIFT FUR PHYSIK B-CONDENSED MATTER, 1993, 93 (01): : 103 - 108