Dimensions of graphs of prevalent continuous maps

被引:8
作者
Balka, Richard [1 ,2 ,3 ,4 ]
机构
[1] Univ British Columbia, Dept Math, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[2] Pacific Inst Math Sci, 1984 Math Rd, Vancouver, BC V6T 1Z2, Canada
[3] Univ Washington, Dept Math, Box 354350, Seattle, WA 98195 USA
[4] Hungarian Acad Sci, Alfred Renyi Inst Math, POB 127, H-1364 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
Haar null; shy; prevalent; graph; continuous map; Hausdorff dimension; box dimension; Minkowski dimension; packing dimension;
D O I
10.4171/JFG/41
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be an uncountable compact metric space and let (K,R-d) denote the set of continuous maps f : K -> R-d endowed with the maximum norm. The goal of this paper is to determine various fractal dimensions of the graph of a prevalent f is an element of C (K,R-d). As the main result of the paper we show that if K has at most finitely many isolated points then the lower and upper box dimension of the graph of a prevalent f is an element of C (K,R-d) are (dim) under bar K-B + d and (dim) under bar K-B + d, respectively. This generalizes a theorem of Gruslys, Jonusas, Mijovic, Ng, Olsen, and Petrykiewicz. We prove that the packing dimension of the graph of a prevalent f is an element of C (K,R-d) is dim(P) K + d, generalizing a result of Balka, Darji, and Elekes. Balka, Darji, and Elekes proved that the Hausdorff dimension of the graph of a prevalent f is an element of C (K,R-d) equals dim(H) K + d. We give a simpler proof for this statement based on a method of Fraser and Hyde.
引用
收藏
页码:407 / 428
页数:22
相关论文
共 27 条
[1]   Hausdorff and packing dimension of fibers and graphs of prevalent continuous maps [J].
Balka, Richard ;
Darji, Udayan B. ;
Elekes, Marton .
ADVANCES IN MATHEMATICS, 2016, 293 :221-274
[2]   DIMENSION AND MEASURE FOR GENERIC CONTINUOUS IMAGES [J].
Balka, Richard ;
Farkas, Abel ;
Fraser, Jonathan M. ;
Hyde, James T. .
ANNALES ACADEMIAE SCIENTIARUM FENNICAE-MATHEMATICA, 2013, 38 (01) :389-404
[3]   Topological Hausdorff dimension and level sets of generic continuous functions on fractals [J].
Balka, Richard ;
Buczolich, Zoltan ;
Elekes, Marton .
CHAOS SOLITONS & FRACTALS, 2012, 45 (12) :1579-1589
[4]  
Bayart Frederic, 2013, TRENDS MATH, P25, DOI 10.1007/978-0-8176-8400-6_2
[5]   SETS OF HAAR MEASURE ZERO IN ABELIAN POLISH GROUPS [J].
CHRISTENSEN, JP .
ISRAEL JOURNAL OF MATHEMATICS, 1972, 13 (3-4) :255-260
[6]   EXAMPLES OF NON-SHY SETS [J].
DOUGHERTY, R .
FUNDAMENTA MATHEMATICAE, 1994, 144 (01) :73-88
[7]   The horizon problem for prevalent surfaces [J].
Falconer, K. J. ;
Fraser, J. M. .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2011, 151 :355-372
[8]  
Falconer K. J., 2014, FRACTAL GEOMETRY
[9]   Projection theorems for box and packing dimensions [J].
Falconer, KJ ;
Howroyd, JD .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1996, 119 :287-295
[10]   A note on the 1-prevalence of continuous images with full Hausdorff dimension [J].
Fraser, Jonathan M. ;
Hyde, James T. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 421 (02) :1713-1720