MINIMAL REPRESENTATION-INFINITE COIL ALGEBRAS

被引:51
作者
ASSEM, I [1 ]
SKOWRONSKI, A [1 ]
机构
[1] NICHOLAS COPERNICUS UNIV,INST MATH,PL-87100 TORUN,POLAND
关键词
D O I
10.1007/BF02568435
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For a basic and connected finite dimensional algebra A over an algebraically closed field, we study when the cycles in the category mod A (of finite dimensional modules) are well-behaved. We call A cycle-finite if, for any cycle in mod A, no morphism on the cycle lies in the infinite power of the radical. We show that, in this case, A is tame. We also introduce a natural generalisation of a tube, called a coil, and define A to be a coil algebra if any cycle in mod A lies in a standard coil. We prove that the minimal representation-infinite coil algebras coincide with the tame concealed algebras. © 1990 Springer-Verlag.
引用
收藏
页码:305 / 331
页数:27
相关论文
共 30 条
[1]  
ASSEM I, 1988, P LOND MATH SOC, V56, P417
[2]   ALGEBRAS WITH CYCLE-FINITE DERIVED CATEGORIES [J].
ASSEM, I ;
SKOWRONSKI, A .
MATHEMATISCHE ANNALEN, 1988, 280 (03) :441-463
[3]   ITERATED TILTED ALGEBRAS OF TYPE AN [J].
ASSEM, I ;
SKOWRONSKI, A .
MATHEMATISCHE ZEITSCHRIFT, 1987, 195 (02) :269-290
[4]  
ASSEM I, UNPUB MULTICOIL ALGE
[5]  
ASSEM I, 1989, 49 U SHERBR PREPR
[6]  
ASSEM I, 1989, TSUKUBA J MATH, V13, P31, DOI DOI 10.21099/TKBJM/1496161006
[7]   REPRESENTATION THEORY OF ARTIN ALGEBRAS -3 ALMOST SPLIT SEQUENCES [J].
AUSLANDER, M ;
REITEN, I .
COMMUNICATIONS IN ALGEBRA, 1975, 3 (03) :239-294
[8]   REPRESENTATION THEORY OF ARTIN ALGEBRAS .4. INVARIANTS GIVEN BY ALMOST SPLIT SEQUENCES [J].
AUSLANDER, M ;
REITEN, I .
COMMUNICATIONS IN ALGEBRA, 1977, 5 (05) :443-518
[9]   A CRITERION FOR FINITE REPRESENTATION TYPE [J].
BONGARTZ, K .
MATHEMATISCHE ANNALEN, 1984, 269 (01) :1-12
[10]  
BONGARTZ K, 1983, J LOND MATH SOC, V28, P461