Enhanced Reaction Kinetic of Fe3O4-graphite Nanofiber Composite Electrode for Lithium Ion Batteries

被引:6
作者
Wang, Wan Lin [1 ]
Park, Ju-Young [1 ]
Gu, Hal-Bon [1 ]
机构
[1] Chonnam Natl Univ, Dept Elect Engn, Gwangju 500757, South Korea
关键词
Fe3O4; Composite; Electrochemical performance; Graphite nanofiber; Lithium ion diffusion;
D O I
10.4313/TEEM.2014.15.6.338
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A Fe3O4-graphite nanofiber composite for use as an anode material was successfully synthesized by calcining Fe2O3 and graphite nanofiber (GNF) together in a N-2 atmosphere. Using this Fe3O4-GNF composite in a lithium ion battery resulted in a higher lithium storage capacity than that obtained using Fe3O4-graphite (Fe3O4-G). The Fe3O4-GNF (10 wt%) electrode exhibited a higher lithium ion diffusion coefficient (2.29x10(-9) cm(2) s(-1)) than did the Fe3O4-G (10%) (3.17x10(-10) cm(2) s(-1)). At a current density of 100 mA g(-1), the Fe3O4-GNF (10 wt%) anode showed a higher reversible capacity (1,031 mAh g(-1)) than did the Fe3O4-G (10%) anode (799 mAh g(-1)). Moreover, the Fe(3)O(4)GNF electrodes showed good cycling performance without the addition of a conductive material.
引用
收藏
页码:338 / 343
页数:6
相关论文
共 36 条
[1]   High-Yield Gas-Liquid Interfacial Synthesis of Highly Dispersed Fe3O4 Nanocrystals and Their Application in Lithium-Ion Batteries [J].
Cui, Zhi-Min ;
Hang, Ling-Yan ;
Song, Wei-Guo ;
Guo, Yu-Guo .
CHEMISTRY OF MATERIALS, 2009, 21 (06) :1162-1166
[2]   PEG-200-assisted hydrothermal method for the controlled-synthesis of highly dispersed hollow Fe3O4 nanoparticles [J].
Gao, Guo ;
Qiu, Peiyu ;
Qian, Qirong ;
Zhou, Na ;
Wang, Kan ;
Song, Hua ;
Fu, Hualin ;
Cui, Daxiang .
JOURNAL OF ALLOYS AND COMPOUNDS, 2013, 574 :340-344
[3]   Lithium-ion intercalation Behavior of LiFePO4 in aqueous and nonaqueous electrolyte solutions [J].
He, Ping ;
Zhang, Xiao ;
Wang, Yong-Gang ;
Cheng, Liang ;
Xia, Yong-Yao .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2008, 155 (02) :A144-A150
[4]   Self-assembly of Fe3O4 nanorods on graphene for lithium ion batteries with high rate capacity and cycle stability [J].
Hu, Aiping ;
Chen, Xiaohua ;
Tang, Yuanhong ;
Tang, Qunli ;
Yang, Lei ;
Zhang, Shaopeng .
ELECTROCHEMISTRY COMMUNICATIONS, 2013, 28 :139-142
[5]   Scalable synthesis of Fe3O4/C composites with enhanced electrochemical performance as anode materials for lithium-ion batteries [J].
Hu, Meijuan ;
Jiang, Yinzhu ;
Yan, Mi .
JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 582 :563-568
[6]   Low-temperature growth of well-crystalline Co3O4 hexagonal nanodisks as anode material for lithium-ion batteries [J].
Hwang, S. W. ;
Umar, Ahmad ;
Kim, S. H. ;
Al-Sayari, S. A. ;
Abaker, M. ;
Al-Hajry, A. ;
Stephan, A. Manuel .
ELECTROCHIMICA ACTA, 2011, 56 (24) :8534-8538
[7]   Cellulose/graphite/carbon fibres composite electrodes for Li-ion batteries [J].
Jabbour, Lara ;
Destro, Matteo ;
Chaussy, Didier ;
Gerbaldi, Claudio ;
Bodoardo, Silvia ;
Penazzi, Nerino ;
Beneventi, Davide .
COMPOSITES SCIENCE AND TECHNOLOGY, 2013, 87 :232-239
[8]   Graphite oxide/poly(methyl methacrylate) nanocomposites prepared by a novel method utilizing macroazoinitiator [J].
Jang, Jin Young ;
Kim, Min Seok ;
Jeong, Han Mo ;
Shin, Cheol Min .
COMPOSITES SCIENCE AND TECHNOLOGY, 2009, 69 (02) :186-191
[9]   Electrochemical properties of LiFePO4-multiwalled carbon nanotubes composite cathode materials for lithium polymer battery [J].
Jin, Bo ;
Jin, En Mei ;
Park, Kyung-Hee ;
Gu, Hal-Bon .
ELECTROCHEMISTRY COMMUNICATIONS, 2008, 10 (10) :1537-1540
[10]   Fe3O4-pyrolytic graphite oxide composite as an anode material for lithium secondary batteries [J].
Jin, Bo ;
Liu, An-Hui ;
Liu, Guang-Yin ;
Yang, Zhi-Zheng ;
Zhong, Xiao-Bin ;
Ma, Xin-Zhou ;
Yang, Mo ;
Wang, Hui-Yuan .
ELECTROCHIMICA ACTA, 2013, 90 :426-432