GAUSSIAN CURVATURE ON SINGULAR SURFACES

被引:18
|
作者
CHEN, WX
LI, CM
机构
[1] SW MISSOURI STATE UNIV,DEPT MATH,SPRINGFIELD,MO 65804
[2] INST ADV STUDY,SCH MATH,PRINCETON,NJ 08540
关键词
CRITICAL AND SUPERCRITICAL CASES; NONLINEAR ELLIPTIC EQUATIONS; VARIATIONAL METHODS; PRESCRIBING GAUSSIAN CURVATURE; SURFACES WITH CONICAL SINGULARITIES;
D O I
10.1007/BF02921316
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider prescribing Gaussian curvature on surfaces with conical singularities in both Then we obtain sufficient conditions for a function to be the Gaussian curvature of some pointwise conformal singular metric. We only require that the values of the function are not too large at singular points of the metric with the smallest angle, say, less or equal to 0, or less than its average value. To prove the results, we apply some new ideas and techniques. One of them is to estimate the total curvature along a certain minimizing sequence by using the ''Distribution of Mass Principle'' and the behavior of the critical points at infinity.
引用
收藏
页码:315 / 334
页数:20
相关论文
共 50 条
  • [1] The Gaussian curvature of Alexandrov surfaces
    Machigashira, Y
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1998, 50 (04) : 859 - 878
  • [2] Curvature of singular Bezier curves and surfaces
    Sederberg, Thomas W.
    Lin, Hongwei
    Li, Xin
    COMPUTER AIDED GEOMETRIC DESIGN, 2011, 28 (04) : 233 - 244
  • [3] The curvature of minimal surfaces in singular spaces
    Mese, C
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2001, 9 (01) : 3 - 34
  • [4] Gaussian Curvature Connection of Bezier Surfaces
    Meng, Qingxian
    Liu, Jinqiu
    Meng, Huihui
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON CIVIL ENGINEERING AND TRANSPORTATION 2015, 2016, 30 : 1467 - 1470
  • [5] Gaussian curvature on hyperelliptic Riemann surfaces
    Castorena, Abel
    PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES-MATHEMATICAL SCIENCES, 2014, 124 (02): : 155 - 167
  • [6] Gaussian and moan curvature of subdivision surfaces
    Peters, J
    Umlauf, G
    MATHEMATICS OF SURFACES IX, 2000, : 59 - 69
  • [7] Phyllotaxis on surfaces of constant Gaussian curvature
    Sadoc, J. F.
    Charvolin, J.
    Rivier, N.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2013, 46 (29)
  • [8] Gaussian curvature on hyperelliptic Riemann surfaces
    ABEL CASTORENA
    Proceedings - Mathematical Sciences, 2014, 124 : 155 - 167
  • [9] Harmonic mean curvature flow on surfaces of negative Gaussian curvature
    Daskalopoulos, Panagiota
    Hamilton, Richard
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2006, 14 (05) : 907 - 943
  • [10] The Gaussian and mean curvature criteria for curvature continuity between surfaces
    Ye, XZ
    COMPUTER AIDED GEOMETRIC DESIGN, 1996, 13 (06) : 549 - 567