Local Well-Posedness and Blow Up Criterion for the Inviscid Boussinesq System in Holder Spaces

被引:24
|
作者
Cui Xiaona [1 ]
Dou Changsheng [2 ]
Jiu Quansen [3 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] LCP, Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
关键词
Inviscid Boussinesq system; local well-posedness; blow-up criterion;
D O I
10.4208/jpde.v25.n3.3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the local in time existence and a blow up criterion of solution in the Holder spaces for the inviscid Boussinesq system in R-N,N >= 2, under the assumptions that the initial values theta(0),u(0) is an element of C-r, with 1 < r not equal 2.
引用
收藏
页码:220 / 238
页数:19
相关论文
共 50 条
  • [1] On the Boussinesq system: local well-posedness of the strong solution and inviscid limits
    Guo, Lianhong
    Li, Yuanfei
    Hou, Chunjuan
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (01)
  • [2] On the Boussinesq system: local well-posedness of the strong solution and inviscid limits
    Lianhong Guo
    Yuanfei Li
    Chunjuan Hou
    Boundary Value Problems, 2019
  • [3] Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces
    Liu Xiaofeng
    Wang, Meng
    Zhang, Zhifei
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (02) : 280 - 292
  • [4] Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces
    Liu Xiaofeng
    Meng Wang
    Zhifei Zhang
    Journal of Mathematical Fluid Mechanics, 2010, 12 : 280 - 292
  • [5] ON THE WELL-POSEDNESS OF THE INVISCID BOUSSINESQ EQUATIONS IN THE BESOV-MORREY SPACES
    Bie, Qunyi
    Wang, Qiru
    Yao, Zheng-An
    KINETIC AND RELATED MODELS, 2015, 8 (03) : 395 - 411
  • [6] ON THE LAGRANGIAN AVERAGED EULER EQUATIONS: LOCAL WELL-POSEDNESS AND BLOW-UP CRITERION
    Yu, Xinwei
    Zhai, Zhichun
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2012, 11 (05) : 1809 - 1823
  • [7] THE LOCAL WELL-POSEDNESS, BLOW-UP AND GLOBAL SOLUTION OF A NEW INTEGRABLE SYSTEM IN BESOV SPACES
    Zheng, Pei
    Yin, Zhaoyang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2025,
  • [8] Local Well-Posedness and Blow-Up for the Solutions to the Axisymmetric Inviscid Hall-MHD Equations
    Jeong, Eunji
    Kim, Junha
    Lee, Jihoon
    ADVANCES IN MATHEMATICAL PHYSICS, 2018, 2018
  • [9] Local well-posedness and blow-up criterion to a nonlinear shallow water wave equation
    Lu, Chenchen
    Chen, Lin
    Lai, Shaoyong
    AIMS MATHEMATICS, 2024, 9 (01): : 1199 - 1210
  • [10] On the well-posedness of the inviscid 2D Boussinesq equation
    Inci, Hasan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2018, 69 (04):