Local Well-Posedness and Blow Up Criterion for the Inviscid Boussinesq System in Holder Spaces

被引:24
|
作者
Cui Xiaona [1 ]
Dou Changsheng [2 ]
Jiu Quansen [3 ]
机构
[1] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[2] LCP, Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[3] Capital Normal Univ, Sch Math Sci, Beijing 100048, Peoples R China
来源
JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS | 2012年 / 25卷 / 03期
关键词
Inviscid Boussinesq system; local well-posedness; blow-up criterion;
D O I
10.4208/jpde.v25.n3.3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove the local in time existence and a blow up criterion of solution in the Holder spaces for the inviscid Boussinesq system in R-N,N >= 2, under the assumptions that the initial values theta(0),u(0) is an element of C-r, with 1 < r not equal 2.
引用
收藏
页码:220 / 238
页数:19
相关论文
共 50 条
  • [1] On the Boussinesq system: local well-posedness of the strong solution and inviscid limits
    Guo, Lianhong
    Li, Yuanfei
    Hou, Chunjuan
    BOUNDARY VALUE PROBLEMS, 2019, 2019 (01)
  • [2] ON THE WELL-POSEDNESS OF THE INVISCID BOUSSINESQ EQUATIONS IN THE BESOV-MORREY SPACES
    Bie, Qunyi
    Wang, Qiru
    Yao, Zheng-An
    KINETIC AND RELATED MODELS, 2015, 8 (03) : 395 - 411
  • [3] Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces
    Liu Xiaofeng
    Wang, Meng
    Zhang, Zhifei
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2010, 12 (02) : 280 - 292
  • [4] Local Well-Posedness and Blowup Criterion of the Boussinesq Equations in Critical Besov Spaces
    Liu Xiaofeng
    Meng Wang
    Zhifei Zhang
    Journal of Mathematical Fluid Mechanics, 2010, 12 : 280 - 292
  • [5] Local well-posedness and blow-up criterion to a nonlinear shallow water wave equation
    Lu, Chenchen
    Chen, Lin
    Lai, Shaoyong
    AIMS MATHEMATICS, 2024, 9 (01): : 1199 - 1210
  • [6] Blow-up criterion for the density dependent inviscid Boussinesq equations
    Li, Li
    Zhou, Yanping
    BOUNDARY VALUE PROBLEMS, 2020, 2020 (01)
  • [7] Stability, well-posedness and blow-up criterion for the Incompressible Slice Model
    Alonso-Oran, Diego
    de Leon, Aythami Bethencourt
    PHYSICA D-NONLINEAR PHENOMENA, 2019, 392 : 99 - 118
  • [8] Sharp local well-posedness for the "good" Boussinesq equation
    Kishimoto, Nobu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (06) : 2393 - 2433
  • [9] Blow-up criterion for the density dependent inviscid Boussinesq equations
    Li Li
    Yanping Zhou
    Boundary Value Problems, 2020
  • [10] Blow-up phenomena and the local well-posedness and ill-posedness of the generalized Camassa–Holm equation in critical Besov spaces
    Zhiying Meng
    Zhaoyang Yin
    Monatshefte für Mathematik, 2023, 200 : 933 - 954